Skip to main content
Log in

Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing

  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nanoporous silica materials have become a prominent novel class of biomaterials which are typically applied as nanoparticles or thin films. Their large surface area combined with the rich surface chemistry of amorphous silica affords the possibility to equip this material with variable functionalities, also with several different ones on the same particle or coating. Although many studies have shown that nanoporous silica is apparently non-toxic and basically biocompatible, any surface modification may change the surface properties considerably and, therefore, the modified materials should be checked for their biocompatibility at every step. Here we report on different silane-based functionalization strategies, firstly a conventional succinic anhydride-based linker system and, secondly, copper-catalyzed click chemistry, to bind polysialic acid, a polysaccharide important in neurogenesis, onto nanoporous silica nanoparticles (NPSNPs) of MCM-41 type. At each of the different modification steps, the materials are characterized by cell culture experiments. The results show that polysialic acid can be immobilized on the surface of NPSNPs by using different strategies. The cell culture experiments show that the kind of surface immobilization has a strong influence on the toxicity of the material versus the cells. Whereas most modifications appear inoffensive, NPSNPs modified by click reactions are toxic, probably due to residues of the Cu catalyst used in these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Silica particles: novel drug delivery system. Adv. Mater. 2004;16:1959–66.

    Article  Google Scholar 

  2. Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK, Hung Y, Lin YS, Mou CY, Yang CS, Huang DM. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small. 2008;4:619–26.

    Article  Google Scholar 

  3. Trewyn BG, Giri S, Slowing II, Lin VSY. Mesoporous silica nanoparticles based controlled released, drug delivery and biosensor systems. Chem. Commun. 2007;31:3236–45.

    Article  Google Scholar 

  4. Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 2012;24:517–24.

    Article  Google Scholar 

  5. Fried DI, Schlossbauer A, Bein T. Immobilizing glycopyranose on mesoporous silica via “click chemistry” for borate adsorption. Microporous Mesoporous Mater. 2012;147:5–9.

    Article  Google Scholar 

  6. Lim JS, Lee K, Choi JN, Hwang YK, Yun MY, Kim HJ, Won YS, Kim SJ, Kwon H, Huh S. Intracellular protein delivery by hollow mesoporous silica capsules with a large surface hole. Nanotechnology. 2012;23:1–11.

    Google Scholar 

  7. Tagaya M, Ikoma T, Yoshioka T, Motozuka S, Xu Z, Minami F, Tanaka J. Synthesis and luminescence properties of Eu(III)-doped nanoporous silica spheres. J. Colloid Interface Sci. 2011;363:456–64.

    Article  Google Scholar 

  8. Argyo C, Cauda V, Engelke H, Rädler J, Bein G, Bein T. Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chem. Eur. J. 2012;18:428–32.

    Article  Google Scholar 

  9. Ehlert N, Mueller PP, Stieve M, Lenarz T, Behrens P. Mesoporous silica films as a novel biomaterial: applications in the middle ear. Chem. Soc. Rev. 2013;42:3847–61.

    Article  Google Scholar 

  10. Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem. Res. Toxicol. 2012;25:2265–84.

    Article  Google Scholar 

  11. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gönen M, Kalaigian H, Schöder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014;6:260ra149.

    Article  Google Scholar 

  12. Turck C, Brandes G, Krueger I, Behrens P, Mojallal H, Lenarz T, Stieve M. Histological evaluation of novel ossicular chain replacement prostheses: an animal study in rabbits. Acta Oto-Laryngol. 2007;127:801–8.

    Article  Google Scholar 

  13. Vogt JC, Brandes G, Krueger I, Behrens P, Nolte I, Lenarz T, Stieve M. A comparison of different nanostructured biomaterials in subcutaneous tissue. J. Mater. Sci. 2008;19:2629–36.

    Google Scholar 

  14. Vogt JC, Brandes G, Ehlert N, Behrens P, Nolte I, Mueller PP, Lenarz T, Stieve M. Free Bioverit®II implants coated with a nanoporous silica layer in a mouse ear model—a histological study. J. Biomater. Appl. 2009;24:175–91.

    Article  Google Scholar 

  15. Ehlert N, Badar M, Christel A, Lohmeier SJ, Luessenhop T, Stieve M, Lenarz T, Mueller PP, Behrens P. Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. J. Mater. Chem. 2011;21:752–60.

    Article  Google Scholar 

  16. Lensing R, Bleich A, Smoczek A, Glage S, Ehlert N, Luessenhop T, Behrens P, Mueller PP, Kietzmann M, Stieve M. Efficacy of nanoporous silica coatings on middle ear protheses as a delivery system for antibiotics: an animal study in rabbits. Acta Biomater. 2013;9:4815–25.

    Article  Google Scholar 

  17. Ehlert N, Hoffmann A, Luessenhop T, Gros G, Mueller PP, Stieve M, Lenarz T, Behrens P. Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomater. 2011;7:1772–9.

    Article  Google Scholar 

  18. Chen L, Wen Y, Su B, Di J, Song Y, Jianga L. Programmable DNA switch for bioresponsive controlled release. J. Mater. Chem. 2011;21:13811.

    Article  Google Scholar 

  19. Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 2004;24:621–38.

    Article  Google Scholar 

  20. Asefa T, Otuonye AN, Wang G, Blair EA, Vathyam R, Denton K. Controlling adsorption and release of drug and small molecules by organic functionalization of mesoporous materials. Adsorption. 2009;15:287–99.

    Article  Google Scholar 

  21. Huh S, Wiench JW, Trewyn BG, Song S, Pruski M, Lin VSY. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups. Chem. Commun. 2003;18:2364–5.

    Article  Google Scholar 

  22. Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small. 2009;5:2285–90.

    Article  Google Scholar 

  23. Estèvez MC, O’Donoghue MB, Chen X, Tan W. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res. 2009;2:448–61.

    Article  Google Scholar 

  24. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J. Mater. Chem. 2009;19:5737–43.

    Article  Google Scholar 

  25. Kim MH, Na HK, Kim YK, Ryoo SR, Cho HS, Lee KE, Jeon H, Ryoo R, Min DH. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge poresand their application in gene delivery. ACS Nano. 2011;5:3568–76.

    Article  Google Scholar 

  26. Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007;2:295–300.

    Article  Google Scholar 

  27. Mühlenhoff M, Echhardt M, Gerardy-Schahn R. Polysialic acid: three-dimensional structure, biosynthesis and function. Curr. Opin. Struct. Biol. 1998;8:558–64.

    Article  Google Scholar 

  28. Angata K, Fukuda M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie. 2003;85:195–206.

    Article  Google Scholar 

  29. Rutishauser U. Polysialic acid at the cell surface: biophysics in service of cell iinteractions and tissue plasticity. J Cell. Biochem. 1998;70:304–12.

    Article  Google Scholar 

  30. Rode B, Endres C, Ran C, Stahl F, Beutel S, Kasper C, Galuska S, Geyer R, Mühlenhoff M, Gerardy-Schahn R, Scheper T. Large-scale production and homogenous purification of long chain polysialic acid from E. coli K1. J. Biotechnol. 2008;135:202–9.

    Article  Google Scholar 

  31. Haile Y, Haastert K, Cesnulevicius K, Stummeyer K, Timmer M, Berski S, Dräger G, Gerardy-Schahn R, Grothe C. Culturing of glial and neuronal cells on polysialic acid. Biomaterials. 2007;28:1163–73.

    Article  Google Scholar 

  32. Bruns S, Stark Y, Röker S, Wieland M, Dräger G, Kirschning A, Stahl F, Kasper C, Scheper T. Collagen biomaterial doped with colominic acid for cell culture applications with regard to peripheral nerve repair. J. Biotechnol. 2007;131:335–45.

    Article  Google Scholar 

  33. Steinhaus S, Stark Y, Bruns S, Haile Y, Scheper T, Grothe C, Behrens P. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration. J. Mater. Sci. 2010;21:1371–8.

    Google Scholar 

  34. Stark Y, Bruns S, Stahl F, Kasper C, Wesemann M, Grothe C, Scheper T. Fast and efficient screening system for new biomaterials in tissue engineering: A model for peripheral nerve regeneration. J. Biomed. Mater. Res. A. 2007;81A:736–47.

    Article  Google Scholar 

  35. Patane J, Trapani V, Villavert J, McReynolds KD. Preparative production of colominic acid oligomers via a facile microwave hydrolysis. Carbohydr. Res. 2009;344:820–4.

    Article  Google Scholar 

  36. Berski S, van Bergeijk J, Schwarzer D, Stark Y, Kasper C, Scheper T, Grothe C, Gerardy-Schahn R, Kirschning A, Dräger G. Synthesis and biological evaluation of a polysialic acid-based hydrogel as enzymatically degradable scaffold material for tissue engineering. Biomacromolecules. 2008;9:2353–9.

    Article  Google Scholar 

  37. Haile Y, Berski S, Dräger G, Nobre A, Stummeyer K, Gerardy-Schahn R, Grothe C. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials. 2008;29:1880–91.

    Article  Google Scholar 

  38. Su Y, Kasper C, Kirschning A, Dräger G, Berski S. Synthesis of new polysialic acid derivatives. Macromol. J. 2010;10:1028–33.

    Google Scholar 

  39. Evans RA. The rise of azide-alkyne 1,3-dipolar `click` cycloaddition and its application to polymer science and surface modification. Aust. J. Chem. 2007;60:984–95.

    Article  Google Scholar 

  40. Lummerstorfer T, Hoffmann H. Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J. Phys. Chem. 2004;108:3963–6.

    Article  Google Scholar 

  41. Devaraj NK, Collman JP. Copper catalyzed azide-alkyne cycloadditions on solid surfaces: applications and future directions. QSAR Comb. Sci. 2007;26:1253–60.

    Article  Google Scholar 

  42. Zhou Y, Wang S, Xie Y, Guan W, Ding B, Yang Z, Jiang X. 1,3-dipolar cycloaddition as a general route for functionalization of Fe3O4 nanoparticles. Nanotechnology. 2008;19:1–5.

    Google Scholar 

  43. Bice I, Celik H, Wolff C, Beutel S, Zahid M, Hitzmann B, Rinas U, Kasper C, Gerardy-Schahn R, Scheper T. Downstream processing of high chain length polysialic acid using membrane adsorbers and clay minerals for application in tissue engineering. Eng. Life Sci. 2013;13:140–8.

    Article  Google Scholar 

  44. Cai Q, Lou Z, Pang W, Fan Y. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater. 2001;13:258–63.

    Article  Google Scholar 

  45. Qhobosheane M, Santra S, Zhang P, Tan W. Biochemically functionalized silica nanoparticles. Analyst. 2001;126:1274–8.

    Article  Google Scholar 

  46. Ciampi S, Böcking T, Kilian KA, Harper JB, Gooding JJ. Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir. 2008;24:5888–92.

    Article  Google Scholar 

  47. Warren L. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 1959;234:1971–5.

    Google Scholar 

  48. Paerels GB, Schut J. The mechanism of the periodate-thiobarbituric acid reaction of sialic acids. Biochem. J. 1965;96:787–92.

    Google Scholar 

  49. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7.

    Article  Google Scholar 

  50. del Amo DS, Wang W, Jiang H, Besanceney C, Yan AC, Levy M, Liu Y, Marlow FL, Wu P. Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 2010;132:16893–9.

    Article  Google Scholar 

  51. Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 2011;44:666–76.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG within the framework of the research group 548. It also profited from support from the Cluster of Excellence Hearing4all. The authors thank Florian Waltz for assistance with the SEM measurements. We also thank Sven-Jare Lohmeier for the absorption measurements and Stella Kittel and Carla Vogt for determining the amount of copper in the nanoparticle materials. We thank Stefanie Böhm for performing the first cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Behrens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, S., Neumann, A., Bremer, I. et al. Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing. J Mater Sci: Mater Med 26, 125 (2015). https://doi.org/10.1007/s10856-015-5409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5409-3

Keywords

Navigation