Skip to main content

Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces

Abstract

Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone. 1999;25:5s.

    Article  Google Scholar 

  2. 2.

    Stevens MM. Biomaterials for bone tissue engineering. Biomater Bone Tissue Eng. 2008;11:18.

    Google Scholar 

  3. 3.

    Oliva A, Della Ragione F, Salerno A, Riccio V, Tartaro G, Cozzolino A, D’Amato S, Pontoni G, Zappia V. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials. 1996;17:1351.

    Article  Google Scholar 

  4. 4.

    Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875.

    Article  Google Scholar 

  5. 5.

    Zaffe D. Some considerations on biomaterials and bone. Micron. 2005;36:583.

    Article  Google Scholar 

  6. 6.

    Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977;11(Suppl. 16):1.

    Google Scholar 

  7. 7.

    Diamanti MV, Ormellese M, Pedeferri M. Alternating current anodizing of titanium in halogen acids combined with anodic spark deposition: morphological and structural variations. Corros Sci. 2010;52:1824.

    Article  Google Scholar 

  8. 8.

    Park Y-J, Shin K-H, Song H-J. Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate. Appl Surf Sci. 2007;253:6013.

    Article  Google Scholar 

  9. 9.

    Chen C-C, Chen J-H, Chao C-G, Say WC. Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. J Mater Sci. 2005;40:4053.

    Article  Google Scholar 

  10. 10.

    Kuromoto NK, Simão RA, Soares GA. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages. Mater Charact. 2007;58:114.

    Article  Google Scholar 

  11. 11.

    Chang CH, Lee HC, Chen CC, Wu YH, Hsu YM, Chang YP, Yang TI, Fang HW. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells. J Biomed Mater Res A. 2012;100:1687.

    Article  Google Scholar 

  12. 12.

    Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25:4087.

    Article  Google Scholar 

  13. 13.

    Zhu X, Ong JL, Kim S, Kim K. Surface characteristics and structure of anodic oxide films containing Ca and P on a titanium implant material. J Biomed Mater Res. 2002;60:333.

    Article  Google Scholar 

  14. 14.

    Zhu X, Kim K-H, Jeong Y. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials. 2001;22:2199.

    Article  Google Scholar 

  15. 15.

    Ochsenbein A, Chai F, Winter S, Traisnel M, Breme J, Hildebrand HF. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates. Acta Biomater. 2008;4:1506.

    Article  Google Scholar 

  16. 16.

    Cheng FT, Shi P, Man HC. Anatase coating on NiTi via a low-temperature sol–gel route for improving corrosion resistance. Scr Mater. 2004;51:1041.

    Article  Google Scholar 

  17. 17.

    Lee H, Song MY, Jurng J, Park Y-K. The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 2011;214:64.

    Article  Google Scholar 

  18. 18.

    Yoshida R, Suzuki Y, Yoshikawa S. Syntheses of TiO2(B) nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments. J Solid State Chem. 2005;178:2179.

    Article  Google Scholar 

  19. 19.

    Diamanti MV, Pedeferri MP. Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci. 2007;49:939.

    Article  Google Scholar 

  20. 20.

    Fadl-Allah SA, El-Sherief RM, Badawy WA. Electrochemical formation and characterization of porous titania (TiO2) films on Ti. J Appl Electrochem. 2008;38:1459.

    Article  Google Scholar 

  21. 21.

    Santos E, Kuromoto NK, Soares GA. Mechanical properties of titania films used as biomaterials. Mater Chem Phys. 2007;102:92.

    Article  Google Scholar 

  22. 22.

    Shokouhfar M, Dehghanian C, Montazeri M, Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: part II. Appl Surf Sci. 2012;258:2416.

    Article  Google Scholar 

  23. 23.

    Stojadinović S, Vasilić R, Petković M, Zeković L. Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf Coat Technol. 2011;206:575.

    Article  Google Scholar 

  24. 24.

    Li Y, Lee I-S, Cui F-Z, Choi S-H. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials. 2008;29:2025.

    Article  Google Scholar 

  25. 25.

    Oh H-J, Lee J-H, Jeong Y, Kim Y-J, Chi C-S. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf Coat Technol. 2005;198:247.

    Article  Google Scholar 

  26. 26.

    Lee J-H, Kim S-E, Kim Y-J, Chi C-S, Oh H-J. Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater Chem Phys. 2006;98:39.

    Article  Google Scholar 

  27. 27.

    Oh H-J, Lee J-H, Kim Y-J, Suh S-J, Lee J-H, Chi C-S. Surface characteristics of porous anodic TiO2 layer for biomedical applications. Mater Chem Phys. 2008;109:10.

    Article  Google Scholar 

  28. 28.

    Yan Y, Sun J, Han Y, Li D, Cui K. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf Coat Technol. 2010;205:1702.

    Article  Google Scholar 

  29. 29.

    Takebe J, Itoh S, Okada J, Ishibashi K. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J Biomed Mater Res A. 2000;51:398.

    Article  Google Scholar 

  30. 30.

    Neupane MP, Park IS, Bae TS, Yi HK, Watari F, Lee MH. Biocompatibility of TiO2 nanotubes fabricated on Ti using different surfactant additives in electrolyte. Mater Chem Phys. 2012;134:536.

    Article  Google Scholar 

  31. 31.

    Sun J, Han Y, Cui K. Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surf Coat Technol. 2008;202:4248.

    Article  Google Scholar 

  32. 32.

    ASTM Standard F67–13. Standar specification for unalloyed titanium, for surgical implant application. ASTM International: West Conshohocken; 2013.

    Google Scholar 

  33. 33.

    ASTM Standard F136–12. Standard specification for wrought titanium-6aluminum-4vanadium eli (extra low interstitial) alloy for surgical implant applications. West Conshohocken: ASTM International; 2012.

    Google Scholar 

  34. 34.

    ASTM Standard B600–11. Standard guide for descaling and cleaning titanium and titanium alloy surfaces. West Conshohocken: ASTM International; 2011.

    Google Scholar 

  35. 35.

    Diamanti MV, Del Curto B, Pedeferri M. Interference colors of thin oxide layers on titanium. Color Res Appl. 2008;33:221.

    Article  Google Scholar 

  36. 36.

    Diamanti MV, Del Curto B, Masconale V, Passaro C, Pedeferri MP. Anodic coloring of titanium and its alloy for jewels production. Color Res Appl. 2012;37:384.

    Article  Google Scholar 

  37. 37.

    Yao Z, Jiang Y, Jia F, Jiang Z, Wang F. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti–6Al–4V alloy. Appl Surf Sci. 2008;254:4084.

    Article  Google Scholar 

  38. 38.

    Wheeler JM, Collier CA, Paillard JM, Curran JA. Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surf Coat Technol. 2010;204:3399.

    Article  Google Scholar 

  39. 39.

    ICDD, PDF-4, The International Centre for Diffraction Data, 2012.

  40. 40.

    Arsov LD, Kormann C, Plieth W. Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide. J Raman Spectrosc. 1991;22:573.

    Article  Google Scholar 

  41. 41.

    Prusi A, Arsov L, Haran B, Popov BN. Anodic behavior of Ti in KOH solutions ellipsometric and micro-raman spectroscopy studies. J Electrochem Soc. 2002;149:B491.

    Article  Google Scholar 

  42. 42.

    Arsov LD, Kormann C, Plieth W. In situ Raman spectra of anodically formed titanium dioxide layers in solutions of H2SO4, KOH, and HNO3. J Electrochem Soc. 1991;138:2964.

    Article  Google Scholar 

  43. 43.

    Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R. Prevascularization of porous biodegradable polymers. Biotechnol Bioeng. 1993;42:716.

    Article  Google Scholar 

  44. 44.

    Wirth C, Grosgogeat B, Lagneau C, Jaffrezic-Renault N, Ponsonnet L. Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: roughness and or chemistry? Mater Sci Eng C. 2008;28:990.

    Article  Google Scholar 

  45. 45.

    Kung K-C, Lee T-M, Chen J-L, Lui T-S. Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surf Coat Technol. 2010;205:1714.

    Article  Google Scholar 

  46. 46.

    Kim SE, Lim JH, Lee SC, Nam S-C, Kang H-G, Choi J. Anodically nanostructured titanium oxides for implant applications. Electrochim Acta. 2008;53:4846.

    Article  Google Scholar 

  47. 47.

    Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem. 2008;621:254.

    Article  Google Scholar 

  48. 48.

    Petković M, Stojadinović S, Vasilić R, Zeković L. Characterization of oxide coatings formed on tantalum by plasma electrolytic oxidation in 12-tungstosilicic acid. Appl Surf Sci. 2011;257:10590.

    Article  Google Scholar 

  49. 49.

    Galvis OA, Quintero D, Castaño JG, Liu H, Thompson GE, Skeldon P, Echeverría F. Formation of grooved and porous coatings on titanium by plasma electrolytic oxidation in H2SO4/H3PO4 electrolytes and effects of coating morphology on adhesive bonding. Surf Coat Technol. 2014.

  50. 50.

    Shen D, Li G, Guo C, Zou J, Cai J, He D, Ma H, Liu F. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation. Appl Surf Sci. 2013;287:451.

    Article  Google Scholar 

  51. 51.

    Zhao L, Cui C, Wang Q, Bu S. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corros Sci. 2010;52:2228.

    Article  Google Scholar 

  52. 52.

    Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, Koak J-Y. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867.

    Article  Google Scholar 

  53. 53.

    Cheng Y, Wu F, Matykina E, Skeldon P, Thompson GE. The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2. Corros Sci. 2012;59:307.

    Article  Google Scholar 

  54. 54.

    Ferdjani S, David D, Beranger G. Anodic oxidation of titanium in phosphoric acid baths: phosphorus incorporation into the oxide. J Alloy Compd. 1993;200:191.

    Article  Google Scholar 

  55. 55.

    Ohtsu N, Komiya S, Kodama K. Effect of electrolytes on anodic oxidation of titanium for fabricating titanium dioxide photocatalyst. Thin Solid Films. 2013;534:70.

    Article  Google Scholar 

  56. 56.

    Cui X, Kim HM, Kawashita M, Wang L, Xiong T, Kokubo T, Nakamura T. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater. 2009;25:80.

    Article  Google Scholar 

  57. 57.

    Diamanti MV, Spreafico FC, Pedeferri MP. Production of anodic TiO2 nanofilms and their characterization. Phys Procedia. 2013;40:30.

    Article  Google Scholar 

  58. 58.

    Pankuch M, Bell R, Melendres CA. Composition and structure of the anodic films on titanium in aqueous solutions. Electrochim Acta. 1993;38:2777.

    Article  Google Scholar 

  59. 59.

    Okumura A, Goto M, Goto T, Yoshinari M, Masuko S, Katsuki T, Tanaka T. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials. 2001;22:2263.

    Article  Google Scholar 

  60. 60.

    Vogler EA, Akhlesh L, Raúl José M-P. Surface modification for biocompatibility. Engineered biomimicry. Boston: Elsevier; 2013. p. 189–220.

    Chapter  Google Scholar 

  61. 61.

    Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573.

    Article  Google Scholar 

  62. 62.

    Aparicio C, Javier Gil F, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263.

    Article  Google Scholar 

  63. 63.

    Martínez E, Engel E, Planell JA, Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann Anat. 2009;191:126.

    Article  Google Scholar 

  64. 64.

    Discher DE, Janmey P, Wang Y-L. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139.

    Article  Google Scholar 

  65. 65.

    Lo C-M, Wang H-B, Dembo M, Wang Y-L. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79:144.

    Article  Google Scholar 

  66. 66.

    Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol. 1992;151:497.

    Article  Google Scholar 

  67. 67.

    Ward MD, Hammer DA. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys J. 1993;64:936–59.

    Article  Google Scholar 

  68. 68.

    Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 2001;3:466.

    Article  Google Scholar 

  69. 69.

    Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110:599.

    Article  Google Scholar 

  70. 70.

    Biggs MJP, Richards RG, Dalby MJ. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine. 2010;6:619.

    Article  Google Scholar 

  71. 71.

    Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997.

    Article  Google Scholar 

  72. 72.

    Andersson AS, Brink J, Lidberg U, Sutherland DS. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans NanoBiosci. 2003;2:49.

    Article  Google Scholar 

  73. 73.

    Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 2005;5:2097.

    Article  Google Scholar 

  74. 74.

    Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379.

    Article  Google Scholar 

  75. 75.

    Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater. 2003;2:715.

    Article  Google Scholar 

  76. 76.

    Yang Y, Kim K-H, Ong JL. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials. 2005;26:327.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial assistance of the “Departamento Administrativo de Ciencia, Tecnología e Innovación – COLCIENCIAS” through the Project 111545221209 and “Estrategia de Sostenibilidad 2013–2014 de la Universidad de Antioquia”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mónica Echeverry-Rendón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Echeverry-Rendón, M., Galvis, O., Quintero Giraldo, D. et al. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces. J Mater Sci: Mater Med 26, 72 (2015). https://doi.org/10.1007/s10856-015-5408-4

Download citation

Keywords

  • Plasma Electrolytic Oxidation
  • Ti6Al4V Alloy
  • Anodic Layer
  • Alamar Blue Assay
  • Plasma Electrolytic Oxidation Coating