A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants

  • Anthony L. B. Maçon
  • Taek B. Kim
  • Esther M. Valliant
  • Kathryn Goetschius
  • Richard K. Brow
  • Delbert E. Day
  • Alexander Hoppe
  • Aldo R. Boccaccini
  • Ill Yong Kim
  • Chikara Ohtsuki
  • Tadashi Kokubo
  • Akiyoshi Osaka
  • Maria Vallet-Regí
  • Daniel Arcos
  • Leandro Fraile
  • Antonio J. Salinas
  • Alexandra V. Teixeira
  • Yuliya Vueva
  • Rui M. Almeida
  • Marta Miola
  • Chiara Vitale-Brovarone
  • Enrica Verné
  • Wolfram Höland
  • Julian R. Jones
Biocompatibility Studies
Part of the following topical collections:
  1. Biocompatibility Studies

Abstract

The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.

Supplementary material

10856_2015_5403_MOESM1_ESM.pdf (117 kb)
Supplementary material 1 (PDF 117 kb)

References

  1. 1.
    Allen T. Particle size measurement: volume 2: surface area and pore size determination. Amsterdam: Kluwer Academic; 1997.Google Scholar
  2. 2.
    Arcos D, Vallet-Regí M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2876–88.CrossRefGoogle Scholar
  3. 3.
    Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.CrossRefGoogle Scholar
  4. 4.
    Brink M, Turunen T, Happonen RP, Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system \(\text{Na}_2\text{O-K}_2\text{O-MgO-CaO-B}_2\text{O}_3\text{-P}_2\text{O}_5\text{-SiO}_2\). J Biomed Mater Res. 1997;37:114–21.CrossRefGoogle Scholar
  5. 5.
    Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q. Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds. Acta Biomater. 2008;4:387–96.CrossRefGoogle Scholar
  6. 6.
    Brunauer S, Emmett PH, Teller E. Adsorption of gasses in multimolecular layers. J Am Chem Soc. 1938;60:309–19.CrossRefGoogle Scholar
  7. 7.
    Cerruti M, Greenspan D, Powers K. Effect of pH and ionic strength on the reactivity of Bioglass® 45S5. Biomaterials. 2005;26:1665–74.CrossRefGoogle Scholar
  8. 8.
    Du MQ, Bian Z, Jiang H, Greenspan DC, Burwell AK, Zhong J, Tai BJ. Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (NovaMin) for the treatment of dentin hypersensitivity. Am J Dent. 2008;21:210–4.Google Scholar
  9. 9.
    Elliot JC, editor. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier Science; 1994.Google Scholar
  10. 10.
    Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 2008;4:1854–64.CrossRefGoogle Scholar
  11. 11.
    Gisbon IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to \(\beta\)-tricalcium phosphate. J Mater Sci. 2000;12:799–804.Google Scholar
  12. 12.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;5:117–41.CrossRefGoogle Scholar
  13. 13.
    Jalota S, Bhaduri SB, Tas AC. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J Mater Sci. 2004;17:697–707.Google Scholar
  14. 14.
    Jones JR, Sepulveda P, Hench LL. Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res. 2001;58:720–6.CrossRefGoogle Scholar
  15. 15.
    Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.CrossRefGoogle Scholar
  16. 16.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.CrossRefGoogle Scholar
  17. 17.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamoto T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.CrossRefGoogle Scholar
  18. 18.
    Li P, Ohtsuki C, Kokubo T, Soga N, de Groot K. The role of hydrated silica, titania and alumina in inducing apatite on implants. J Biomed Mater Res. 1994;28:7–15.CrossRefGoogle Scholar
  19. 19.
    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR. Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem. 2009;19:1276–7282.CrossRefGoogle Scholar
  20. 20.
    Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of porous solids and powders: surface area, pore size and density. New York: Springer; 2004.CrossRefGoogle Scholar
  21. 21.
    Martínez A, Izquierdo-Barba I, Vallet-Regí M. Bioactivity of a \(\text{ CaO-SiO}_2\) binary glasses system. Chem Mater. 2000;12:3080–8.CrossRefGoogle Scholar
  22. 22.
    Mizuno M. Implants for surgery: in vitro evaluation for apatite-forming ability of implant materials. ISO ISO/DIS 23317, International Organization for Standardization, Geneva, Switzerland. 2014.Google Scholar
  23. 23.
    Müller L, Müller FA. Preparation of SBF with different \(\text{HCO}_3^-\) content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–9.CrossRefGoogle Scholar
  24. 24.
    O’Donnell MD, Candarlioglu PL, Miller CA, Gentleman E, Stevens MM. Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration. J Mater Chem. 2010;20:8934–41.CrossRefGoogle Scholar
  25. 25.
    O’Donnell MD. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature. Acta Biomater. 2011;7:2264–9.CrossRefGoogle Scholar
  26. 26.
    Oliveira JM, Correia RN, Fernandes M. Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials. 2002;23:371–9.CrossRefGoogle Scholar
  27. 27.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S. Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res. 2000;51:37–46.CrossRefGoogle Scholar
  28. 28.
    Quintero F, Pou J, Comensa R, Lusquinos F, Riveiro A, Mann AB, Hill RG, Wu ZY, Jones JR. Laser spinning of bioactive glass nanofibers. Adv Funct Mater. 2009;19:3084–90.CrossRefGoogle Scholar
  29. 29.
    Rámila A, Vallet-Regí M. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials. 2001;22:2301–6.CrossRefGoogle Scholar
  30. 30.
    Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio i. synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23:1065–72.CrossRefGoogle Scholar
  31. 31.
    Rohanová D, Boccaccini AR, Horkavcová D, Bozděchová P, Bezdička P, Častorálová M. Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests? J Mater Chem B. 2014;2:5068.CrossRefGoogle Scholar
  32. 32.
    Saravanapavan P, Hench LL. Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary \(\text{CaO-SiO}_2\) system. J Biomed Mater Res. 2000;54:608–18.CrossRefGoogle Scholar
  33. 33.
    Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58s bioactive glasses. J Biomed Mater Res. 2002;61:301–11.CrossRefGoogle Scholar
  34. 34.
    Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19.CrossRefGoogle Scholar
  35. 35.
    Ślośarczyk A, Paszkiewicza Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 2005;744–747:657–61.Google Scholar
  36. 36.
    Stocha A, Jastrzebskia W, Brozeka A, Stochb J, Szaranieca J, Trybalskaa B, Kmita G. FTIR absorption reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 2000;555:375–82.CrossRefGoogle Scholar
  37. 37.
    Watts SJ, Hill RG, O’Donnell MD, Law RV. Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids. 2010;356:517–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anthony L. B. Maçon
    • 1
  • Taek B. Kim
    • 1
  • Esther M. Valliant
    • 1
  • Kathryn Goetschius
    • 3
  • Richard K. Brow
    • 3
  • Delbert E. Day
    • 3
  • Alexander Hoppe
    • 4
  • Aldo R. Boccaccini
    • 4
  • Ill Yong Kim
    • 5
  • Chikara Ohtsuki
    • 5
  • Tadashi Kokubo
    • 6
  • Akiyoshi Osaka
    • 7
  • Maria Vallet-Regí
    • 8
    • 11
  • Daniel Arcos
    • 8
    • 11
  • Leandro Fraile
    • 8
    • 11
  • Antonio J. Salinas
    • 8
    • 11
  • Alexandra V. Teixeira
    • 9
  • Yuliya Vueva
    • 9
  • Rui M. Almeida
    • 9
  • Marta Miola
    • 10
  • Chiara Vitale-Brovarone
    • 10
  • Enrica Verné
    • 10
  • Wolfram Höland
    • 2
  • Julian R. Jones
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of Inorganic Chemistry, Technical FundamentalsR&DLiechtensteinPrincipality of Liechtenstein
  3. 3.Material Research CenterMissouri University of Science and TechnologyRollaUSA
  4. 4.Institute of BiomaterialsUniversity of Erlangen-NürembergErlangenGermany
  5. 5.Graduate School of EngineeringNagoya University, Furo-cho, Chikusa-kuNagoyaJapan
  6. 6.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan
  7. 7.Graduate School of Natural Sciences and TechnologyOkayama UniversityOkayama-shiJapan
  8. 8.Departamento de Quimica Inorganica y BioinorganicaUniversidad Complutense de MadridMadridSpain
  9. 9.Departamento de Engenharia Qumica/ ICEMS, Instituto Superior TcnicoUniversidade de LisboaLisboaPortugal
  10. 10.Department of Applied Science and Technology, Institute of Materials Physics and Engineering Biomaterials LaboratoryPolitecnico di TorinoTurinItaly
  11. 11.CIBER-BBNMadridSpain

Personalised recommendations