Center for Disease Control—National Center for Health Statistics. 2013. http://www.cdc.gov/nchs/data/nhds/4procedures/2010pro4_numberprocedureage.pdf. Accessed 9 Aug 2013.
Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg Am. 2007;89:780–5.
Article
Google Scholar
The Fredonia Group. Implantable medical devices: industry study with forecasts for 2015 and 2020. Cleveland: Fredonia; 2012.
Google Scholar
Ehrlich GD, Stewart PS, Post JC, Lin Q, Stoodley P, Kathju S, Zhao Y, McLeod BR, Balaban N, Hu FZ, Sotereanos NG, Costerton JW. Engineering approaches for the detection and control of orthopaedic biofilm infections. Clin Orthop Relat Res. 2005;437:59–66.
Article
Google Scholar
Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev. 2013;5:191–204.
Google Scholar
Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37:S59–66.
Article
Google Scholar
Lavernia C, Lee DJ, Hernandez VH. The increasing financial burden of knee revision surgery in the United States. Clin Orthop Relat Res. 2006;446:221–6.
Article
Google Scholar
Cavanaugh DL, Berry J, Yarboro SR, Dahners LE. Better prophylaxis against surgical site infection with local as well as systemic antibiotics. J Bone Jt Surg Am. 2009;91:1907–12.
Article
Google Scholar
Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8.
Article
Google Scholar
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.
Article
Google Scholar
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo AC, Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.
Article
Google Scholar
Chopra I. Controlled release of biologically active silver from nanosilver surfaces. J Antimicrob Chemother. 2010;4:6903–13.
Google Scholar
Spadaro JA, Berger TJ, Barranco SD, Chapin SE, Becker RO. Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother. 1974;6:637–42.
Article
Google Scholar
Becker RO, Spadaro JA. Treatment of orthopaedic infections with electrically generated silver ions. J Bone Jt Surg Am. 1978;60:871.
Google Scholar
Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term anti-infective vascular access device. J Infect Dis. 1996;173:495–8.
Article
Google Scholar
Oyama T, Nakano MH, Arai T, Kato D, Maeda N. In vitro evaluation of antimicrobial efficacy of iontophoresis against Enterococcus faecalis, Candida albicans, Pseudomonas aeruginosa and Bacillus subtilis. J Oral Biosci. 2009;5:91–6.
Google Scholar
Fuller TA, Wysk RA, Charumani C, Kennett M, Sebastiennelli WJ, Abrahams R, Shirwaiker RA, Voigt RC, Royer P. Developing an engineered antimicrobial/prophylactic system using electrically activated bactericidal metals. J Mater Sci Mater Med. 2010;21:2103–14.
Article
Google Scholar
Shirwaiker RA, Wysk RA, Kariyawasam S, Carrion H, Voigt RC. Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface. Biofabrication. 2011;3:015003.
Article
Google Scholar
Wysk RA, Sebastianelli WJ, Shirwaiker RA, Bailey GM, Charumani C, Kennett M, Kaucher A, Abrahams R, Fuller TA, Royer P, Voigt RC, Cohen PH. Prophylactic bactericidal orthopedic implants—animal testing study. J Biomed Sci Eng. 2010;3:917–26.
Article
Google Scholar
Milder FL, Anderson D, Weitzner BD. Iontophoretic material. June 1998. US patent 5759564 A.
Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother. 1976;9:357–8.
Article
Google Scholar
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;2:S96–101.
Google Scholar
Hardes J, Winkelmann W, Gosheger G, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007;28:2869–75.
Article
Google Scholar
Samberg ME, Tan Z, Monteiro-Riviere NA, Orndorff PE, Shirwaiker RA. Biocompatibility analysis of an electrically-activated silver-based antibacterial surface system for medical device applications. J Mater Sci Mater Med. 2013;24:755–60.
Article
Google Scholar
Hayes JS, Richards RG. The use of titanium and stainless steel in fracture fixation. Expert Rev Med Devices. 2010;7:843–53.
Article
Google Scholar
Wall EJ, Jain V, Vora V, Mehlman CT, Crawford AH. Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures. J Bone Jt Surg Am. 2008;90:1305–13.
Article
Google Scholar
Oh K, Kim Y, Park Y, Kim K. Properties of super stainless steels for orthodontic applications. J Biomed Mater Res B. 2004;69:183–94.
Article
Google Scholar
Pieske O, Geleng P, Zaspel J, Piltz S. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study. J Trauma. 2008;64:1275–80.
Article
Google Scholar
Bertrand X, Slekovec C, Talon D. Use of mupirocin-chlorhexidine treatment to prevent Staphylococcus aureus surgical-site infections. Fut Microbiol. 2010;5:701–3.
Article
Google Scholar
Keppel G, Wickens TD. Design and analysis: a researcher’s handbook (4th edition). London: Pearson; 2004.
Google Scholar
Donlan R. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–81.
Article
Google Scholar
Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65:158–68.
Article
Google Scholar
John A, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, Trampuz A. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53:2719–24.
Article
Google Scholar
Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, Briggs JP, Sexton DJ, Kaye KS. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003;36:592–8.
Article
Google Scholar
Liu C, Murray BE, Rybak M, Talan DA, Chambers HF, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.
Article
Google Scholar
Pasqualotto AC, Denning DW. Post-operative aspergillosis. Clin Microbiol Infect. 2006;12:1060–76.
Article
Google Scholar
Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153:1677–92.
Article
Google Scholar
DeVries JG, Cuttica DJ, Hyer CF. Cannulated screw fixation of Jones fifth metatarsal fractures: a comparison of titanium and stainless steel screw fixation. J Foot Ankle Surg. 2011;50:207–12.
Article
Google Scholar
Cieślik M, Engvall K, Pan J, Kotarba A. Silane–parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corros Sci. 2011;53:296–301.
Article
Google Scholar
Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.
Article
Google Scholar
Bagchi D, Bagchi M, Stohs SJ. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem. 2001;222:149–58.
Article
Google Scholar
Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33:477–86.
Article
Google Scholar
Carlsson L, Röstlund T, Albrektsson B, Albrektsson T, Brånemark PI. Osseointegration of titanium implants. Acta Orthop Scand. 1986;57:285.
Article
Google Scholar
Yang Y, Bumgardner J, Haggard W, Ong J, Oh N, Liu Y, Chen W, Oh S, Appleford M, Kim S, Kim K, Park S. Enhancing osseointegration using surface-modified titanium implants. JOM. 2006;58:71–6.
Article
Google Scholar
Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.
Article
Google Scholar
Masri BA, Duncan CP, Beauchamp CP. Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplast. 1998;13:331–8.
Article
Google Scholar
Lombardi AV, Berend KR, Adams JB, Karnes JM. Articulating antibiotic spacers: the standard of care for an infected total knee arthroplasty. Orthopedics. 2007;30:786–7.
Google Scholar
Kim DK, Kim IS, Kim SJ, Song YM, Song JK, Zhang YL, Lee TH, Cho TH, Hwang SJ. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. BBA Mol Cell Res. 2006;1769:907–16.
Google Scholar
Song JK, Cho TH, Pan H, Song YM, Kim IS, Lee TH, Hwang SJ, Kim SJ. An electronic device for accelerating bone formation in tissues surrounding a dental implant. Bioelectromagnetics. 2009;30:374–84.
Article
Google Scholar