Kallai I, van Lenthe GH, Ruffoni D, Zilberman Y, Muller R, Pelled G, et al. Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells. J Biomech. 2010;43:2315–20.
Article
Google Scholar
Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calc Tissue Int. 2010;87:450–60.
Article
Google Scholar
Cipitria A, Lange C, Schell H, Wagermaier W, Reichert JC, Hutmacher DW, et al. Porous scaffold architecture guides tissue formation. J Bone Miner Res. 2012;27:1275–88.
Article
Google Scholar
Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A. Bone. 2006;38:466–74.
Article
Google Scholar
Matos MA, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res. 2008;3:4.
Article
Google Scholar
Skedros JG, Dayton MR, Sybrowsky CL, Bloebaum RD, Bachus KN. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol. 2006;209:3025–42.
Article
Google Scholar
Ziv V, Wagner HD, Weiner S. Microstructure-microhardness relations in parallel-fibered and lamellar bone. Bone. 1996;18:417–28.
Article
Google Scholar
Ebenstein DM, Pruitt L. Nanoindentation of biological materials. Nano Today. 2006;1:26–33.
Article
Google Scholar
Lewis G, Nyman JS. The use of nanoindentation for characterizing the properties of mineralized hard tissues: state-of-the art review. J Biomed Mater Res Part B. 2008;87:286–301.
Article
Google Scholar
Oliver WC, Parr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.
Article
Google Scholar
Bianchi M, Russo A, Lopomo N, Boi M, Maltarello MC, Sprio S, et al. Pulsed plasma deposition of zirconia thin films on UHMWPE: proof of concept of a novel approach for joint prosthetic implants. J Mater Chem. 2013;1:310–8.
Article
Google Scholar
Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32:1005–12.
Article
Google Scholar
Faingold A, Cohen SR, Wagner HD. Nanoindentation of osteonal bone lamellae. J Mech Behav Biomed Mater. 2012;9:198–206.
Article
Google Scholar
Rodriguez-Florez N, Oyen ML, Shefelbine SJ. Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater. 2013;18:90–9.
Article
Google Scholar
Hengsberger S, Kulik A, Zysset P. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone. 2002;30:178–84.
Article
Google Scholar
Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone. 2011;49:1279–89.
Article
Google Scholar
Albert C, Jameson J, Toth JM, Smith P, Harris G. Bone properties by nanoindentation in mild and severe osteogenesis imperfecta. Clin Biomech. 2013;28:110–6.
Article
Google Scholar
Cattani-Lorente M, Rizzoli R, Ammann P. In vitro bone exposure to strontium improves bone material level properties. Acta Biomater. 2013;9:7005–13.
Article
Google Scholar
Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haiat G. Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. J Biomech Eng. 2012;134:021007–0210070.
Article
Google Scholar
Arrigoni E, de Girolamo L, Di Giancamillo A, Stanco D, Dellavia C, Carnelli D, et al. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J Orth Sci. 2013;18:331–9.
Article
Google Scholar
Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, et al. Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng. 2008;14:1709–20.
Article
Google Scholar
Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, et al. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone. 2009;45:185–92.
Article
Google Scholar
Ishimoto T, Nakano T, Yamamoto M, Tabata Y. Biomechanical evaluation of regenerating long bone by nanoindentation. J Mater Sci Mater Med. 2011;22:969–76.
Article
Google Scholar
Zapata U, Opperman LA, Kontogiorgos E, Elsalanty ME, Dechow PC. Biomechanical characteristics of regenerated cortical bone in the canine mandible. J Tissue Eng Regen Med. 2011;5:551–9.
Article
Google Scholar
Panseri S, Russo A, Sartori M, Giavaresi G, Sandri M, Fini M, et al. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds. Bone. 2013;56:432–9.
Article
Google Scholar
Russo A, Shelyakova T, Casino D, Lopomo N, Strazzari A, Ortolani A, et al. A new approach to scaffold fixation by magnetic forces: application to large osteochondral defects. Med Eng Phys. 2012;34:1287–93.
Article
Google Scholar
Tampieri A, Landi E, Valentini F, Sandri M, D’Alessandro T, Dediu V, et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology. 2011;22:015104.
Article
Google Scholar
Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–98.
Article
Google Scholar
Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, et al. Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep. J Periodontol. 2007;78:879–88.
Article
Google Scholar
Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS ONE. 2012;7:e38710.
Article
Google Scholar
Wang X, Rao DS, Ajdelsztajn L, Ciarelli TE, Lavernia EJ, Fyhrie DP. Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res. 2008;85B:68–77.
Article
Google Scholar
Oyen ML. Nanoindentation hardness of mineralized tissues. J Biomech. 2006;39:2699–702.
Article
Google Scholar
Bala Y, Depalle B, Douillard T, Meille S, Clement P, Follet H, et al. Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: an instrumented indentation study. J Mech Behav Biomed Mater. 2011;4:1473–82.
Article
Google Scholar