Skip to main content
Log in

Poly(l-lactic acid)/vaterite composite coatings on metallic magnesium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly(l-lactic acid)/vaterite composite materials were coated onto metallic magnesium substrates to control rapid degradation and to improve biocompatibility. Two types of composites were prepared by adding 30 and 60 wt% of vaterite to poly(l-lactic acid) (PLLA). The composite coating layer that contained 30 wt% vaterite in the PLLA matrix had almost no pores on the surface and suppressed the initial rapid degradation of the Mg substrate. After immersion in a culture medium for 7 days, pores of 0.5–1.0 μm in diameter formed on the surface. The composite coating layer that contained 60 wt% vaterite with pores of 1.0–2.0 μm in diameter on the surface did not suppress the degradation of the Mg substrate. During immersion, the pH of the media near the composite coating surfaces was maintained at 7.4–7.5 because of the degradation of PLLA and because the vaterite particles dissolved in the solution. Proliferation of murine osteoblast-like cells (MC3T3-E1) on the substrates was improved using composite coatings. Cells on the coating that contained 60 wt% vaterite had significantly higher proliferation than those on a bare Mg substrate. Our coating provides the optimum combination to suppress the initial Mg degradation and to promote cell growth on the coating surface by adjusting the vaterite content in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  Google Scholar 

  2. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.

    Article  Google Scholar 

  3. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.

  4. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.

    Article  Google Scholar 

  5. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Biomater. 2008;10:B3–14.

    Article  Google Scholar 

  6. Mueller WD, Nascimento ML. Lorenzo de Mele MF. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 2010;6:1749–55.

    Article  Google Scholar 

  7. Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B Biointerfaces. 2012;93:67–74.

    Article  Google Scholar 

  8. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, Cheung KMC. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31:2084–96.

    Article  Google Scholar 

  9. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol. 1999;10:123–9.

    Article  Google Scholar 

  10. Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  Google Scholar 

  11. Hiromoto S, Yamamoto A. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochemica Acta. 2009;54:7085–93.

    Article  Google Scholar 

  12. Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.

    Article  Google Scholar 

  13. Maeda H, Kasuga T, Nogami M, Hibino Y, Hata K, Ueda M, Ota Y. Biomimetic apatite formation on poly(lactic acid) composites containing calcium carbonates. J Mater Res. 2002;17:727–30.

    Article  Google Scholar 

  14. Kasuga T, Maeda H, Kato K, Nogami M, Hata K-I, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24:3247–53.

    Article  Google Scholar 

  15. Maeda H, Kasuga T, Hench LL. Preparation of poly(l-lactic acid)-polysiloxane calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials. 2006;27:1216–22.

    Article  Google Scholar 

  16. Chen HL, Hwang JC. Some comments on the degree of crystallinity defined by the enthalpy of melting. Polymer. 1995;36:4355–7.

    Article  Google Scholar 

  17. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng, C. 2009;29:1559–68.

    Article  Google Scholar 

  18. Schubert DW, Dunkel T. Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mater Res Innovat. 2003;7:314–21.

    Article  Google Scholar 

  19. Ishiyama M, Miyazono Y, Sasamoto K, Ohkuwa Y, Ueno K. A highly water-soluble disulfonated tetrazoloum salt as a chromogenic indicator for NADH as well as cell viability. Talanta. 1997;44:1299–305.

    Article  Google Scholar 

  20. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 1999;36:47–50.

    Article  Google Scholar 

  21. Lampin M, Warocquier-Clerout R, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36:99–108.

    Article  Google Scholar 

  22. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10.

    Article  Google Scholar 

  23. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–58.

    Article  Google Scholar 

  24. Zreiqat H, Howlett CR, Zannettino A, Evans P, Tanzil GS, Knabe C, Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.

    Article  Google Scholar 

  25. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Kubo T, Akagawa A, Hamada Y, Takahashi J, Matsuura N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res. 2002;62:99–105.

    Article  Google Scholar 

  26. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  Google Scholar 

  27. Kohn DH, Sarmadi M, Helman JI, Krebsbach PH. Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res. 2002;60:292–9.

    Article  Google Scholar 

  28. Arnett TR. Extracellular pH regulates bone cell function. J Nutr. 2008;138:4155–85.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hirotaka Maeda for helpful discussions. This work was supported in part by the Institute of Ceramics Research and Education (ICRE), Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Kasuga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, S., Yamamoto, A. & Kasuga, T. Poly(l-lactic acid)/vaterite composite coatings on metallic magnesium. J Mater Sci: Mater Med 25, 2639–2647 (2014). https://doi.org/10.1007/s10856-014-5302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5302-5

Keywords

Navigation