Skip to main content
Log in

Synthesis of bioactive β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The objective of this work was to develop a synthesis procedure for the deposition of β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics. The synthesis procedure involved two steps: (i) a rapid wet-chemical deposition of a biomimetic CaP coating and (ii) a subsequent post-deposition processing of the biomimetic CaP coating, which included a heat treatment between 800 and 1200 °C, followed by a short sonication in a water bath. By regulating the heating temperature the topography of the β-TCP coatings could be controlled. The average surface roughness (Ra) ranged from 42 nm for the coating that was heated at 900 °C (TCP-900) to 630 nm for the TCP-1200 coating. Moreover, the heating temperature also affected the dissolution rate of the coatings in a physiological solution, their protein-adsorption capacity and their bioactivity in a simulated body fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed titanium as a bioinert metal–a review. Quintessence Int. 2005;36(7–8):523–30.

    Google Scholar 

  2. Hench LL, Wilson J. An introduction to bioceramics. London: World Scientific; 1999.

    Google Scholar 

  3. Zijderveld SA, Zerbo IR, van den Bergh JP, Schulten EA, ten Bruggenkate CM. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. Int J Oral Maxillofac Implants. 2005;20(3):432–40.

    Google Scholar 

  4. Bolelli G, Stiegler N, Bellucci D, Cannillo V, Gadow R, Killinger A, et al. Deposition mechanisms in high velocity suspension spraying: case study for two bioactive materials. Surf Coat Technol. 2012;210:28–45.

    Article  Google Scholar 

  5. Rey C, Combes C, Drouet C, Somrani S. Tricalcium phosphate-based ceramics. In: Kokubo T, editor. Bioceramics and their clinical applications. Cambridge: Woodhead Publishing; 2008. p. 326–66.

    Chapter  Google Scholar 

  6. Hu JA, Wang ZY, Guan TH, Gao Y, Lv XW, Lin X, et al. In situ synthesis and fabrication of tricalcium phosphate bioceramic coating on commercially pure titanium by laser rapid forming. Surf Coat Technol. 2010;204(23):3833–7.

    Article  Google Scholar 

  7. Stefanic M, Krnel K, Kosmac T. Novel method for the synthesis of a bioactive β-tricalcium phosphate coating on a zirconia implant. J Eur Ceram Soc. 2013;33:3455–65.

    Article  Google Scholar 

  8. Stefanic M, Krnel K, Pribosic I, Kosmac T. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications. Appl Surf Sci. 2012;258(10):4649–56.

    Article  Google Scholar 

  9. Kokubo T. In vitro evaluation of bone bioactivity. In: Kokubo T, editor. Bioceramics and their clinical applications, vol. 9., Woodhead Publishing Series in Biomaterials. Cambridge: Woodhead Publishing; 2008. p. 165–82.

    Google Scholar 

  10. Müller L, Müller F. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–9.

    Article  Google Scholar 

  11. Barrere F, Layrolle P, Van Blitterswijk CA, De Groot K. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci. 2001;12(6):529–34.

    Google Scholar 

  12. Reiner T, Klinger LM, Gotman I. Biomimetic calcium phosphate growth over differently shaped Ti substrates: modeling the effect of surface curvature. Cryst Growth Des. 2011;11(1):190–5.

    Article  Google Scholar 

  13. Reiner T, Gotman I. Biomimetic calcium phosphate coating on Ti wires versus flat substrates: structure and mechanism of formation. J Mater Sci. 2010;21(2):515–23.

    Google Scholar 

  14. Mortier A, Lemaitre J, Rouxhet PG. Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim Acta. 1989;143:265–82.

    Article  Google Scholar 

  15. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio, I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065–72.

    Article  Google Scholar 

  16. Fowler BO, Moreno EC, Brown WE. Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate. Arch Oral Biol. 1966;11(5):477–92.

    Article  Google Scholar 

  17. Berry EE. The structure and composition of some calcium-deficient apatites. J Inorg Nucl Chem. 1967;29:317–27.

    Article  Google Scholar 

  18. Vasant SR, Joshi MJ. Synthesis and characterization of nanoparticles of calcium pyrophosphate. Mod Phys Lett B. 2011;25(1):53–62.

    Article  Google Scholar 

  19. Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci. 1993;4:165–8.

    Google Scholar 

  20. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio, I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23(4):1065–72.

    Article  Google Scholar 

  21. Mortier A, Lemaitre J, Rodrique L, Rouxhet P. Synthesis and thermal behavior of well-crystallized calcium-deficient phosphate apatite. J Solid State Chem. 1989;78:215–9.

    Article  Google Scholar 

  22. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implant Res. 2009;20:172–84.

    Article  Google Scholar 

  23. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–83.

    Article  Google Scholar 

  24. Preissner KT. Structure and biological role of vitronectin. Annu Rev Cell Biol. 1991;7(1):275–310.

    Article  Google Scholar 

  25. Pankov R, Yamada K. Fibronectin at a glance. J Cell Sci. 2002;115(20):3861–3.

    Article  Google Scholar 

  26. Wennerberg A, Albrektsson T. Structural influence from calcium phosphate coatings and its possible effect on enhanced bone integration. Acta Odontol Scand. 2009;67(6):333–40.

    Article  Google Scholar 

  27. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010;25(1):63–74.

    Google Scholar 

  28. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.

    Article  Google Scholar 

  29. Kondo N, Ogose A, Tokunaga K, Umezu H, Arai K, Kudo N, et al. Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials. 2006;27(25):4419–27.

    Article  Google Scholar 

  30. Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, et al. The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials. 2011;32(15):3855–61.

    Article  Google Scholar 

  31. Roy M, Vamsi Krishna B, Bandyopadhyay A, Bose S. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomater. 2008;4(2):324–33.

    Article  Google Scholar 

  32. Yang Y, Agrawal CM, Kim KH, Martin H, Schulz K, Bumgardner JD, et al. Characterization and dissolution behavior of sputtered calcium phosphate coatings after different postdeposition heat treatment temperatures. J Oral Implant. 2003;29(6):270–7.

    Article  Google Scholar 

  33. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30(12):2175–9.

    Article  Google Scholar 

  34. Pan HB, Zhao XL, Darvell BW, Lu WW. Apatite-formation ability—predictor of “bioactivity”? Acta Biomater. 2010;6(11):4181–8.

    Article  Google Scholar 

  35. Mullin JW. Crystallization. Woburn: Butterworth-Heinemann; 2001.

    Google Scholar 

  36. Zhang Y, Wang M, Lin X, Huang W. Effect of substrate surface microstructure on heterogeneous nucleation behavior. J Mater Sci Technol. 2012;28(1):67–72.

    Article  Google Scholar 

  37. Chen X, Nouri A, Li Y, Lin J, Hodgson PD, Wen CE. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng. 2008;101(2):378–87.

    Article  Google Scholar 

  38. Hou X, Yin G, Chen X, Liao X, Yao Y, Huang Z. Effect of akermanite morphology on precipitation of bone-like apatite. Appl Surf Sci. 2011;257(8):3417–22.

    Article  Google Scholar 

  39. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stefanic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanic, M., Milacic, R., Drazic, G. et al. Synthesis of bioactive β-TCP coatings with tailored physico-chemical properties on zirconia bioceramics. J Mater Sci: Mater Med 25, 2333–2345 (2014). https://doi.org/10.1007/s10856-014-5246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5246-9

Keywords

Navigation