Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time

Abstract

Fibrin networks are obtained through activation of platelet-rich plasma (PRP) for use in tissue regeneration. The importance of fibrin networks relies on mediation of release of growth factors, proliferation of tissue cells and rheological properties of the fibrin gels. Activation of PRP usually involves the decomposition of fibrinogen by agonists, in a wide range of concentrations. Therefore fibrin networks with a large structural diversity are formed, making comparative evaluations difficult. In order to standardize the fibrin networks, we used the statistical techniques central composite rotatable design and response-surface analysis, to correlate the radius of the fibers with the ratios between the agonists (autologous serum/calcium chloride) and agonist/PRP. From an individual and interactive analysis of the variables, architectures characterized by thick, medium and thin fibers were delineated on the response-surface. Furthermore, the architectures were correlated with coagulation time. This approach is valuable for standardizing the PRP preparation for clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Chart 1
Fig. 4
Fig. 5

References

  1. 1.

    Engebretsen L, Steffen K, Alsousou J, Anitua E, Bachl N, Devilee R, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med. 2010;44(15):1072–81. doi:10.1136/bjsm.2010.079822.

    Article  Google Scholar 

  2. 2.

    Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA. Platelet-rich plasma: where are we now and where are we going? Sports Health. 2010;2(3):203.

    Article  Google Scholar 

  3. 3.

    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67. doi:10.1016/j.tibtech.2008.11.009.

    Article  Google Scholar 

  4. 4.

    Zhao H, Ma L, Zhou J, Mao Z, Gao C, Shen J. Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomed Mater. 2008;3(1):015001. doi:10.1088/1748-6041/3/1/015001.

    Article  Google Scholar 

  5. 5.

    Carr ME Jr, Gabriel DA, McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J. 1986;239(3):513–6.

    Google Scholar 

  6. 6.

    Falvo MR, Gorkun OV, Lord ST. The molecular origins of the mechanical properties of fibrin. Biophys Chem. 2010;152(1–3):15–20. doi:10.1016/j.bpc.2010.08.009.

    Article  Google Scholar 

  7. 7.

    Ryan EA, Mockros LF, Weisel JW, Lorand L. Structural origins of fibrin clot rheology. Biophys J. 1999;77(5):2813–26.

    Article  Google Scholar 

  8. 8.

    Henschen A. On the structure of functional sites in fibrinogen. Thromb Res. 1983;29:27–39.

    Article  Google Scholar 

  9. 9.

    Mihalyi E. Clotting of bovine fibrinogen: calcium binding to fibrin during clotting and its dependence on release of fibrinopeptide B. Biochemistry. 1988;27(3):967–76.

    Article  Google Scholar 

  10. 10.

    Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–99.

    Article  Google Scholar 

  11. 11.

    Hardy JJ, Carrell NA, McDonagh J. Calcium ion functions in fibrinogen conversion to fibrin. Ann N. Y. Acad Sci. 1983;408:279–87.

    Article  Google Scholar 

  12. 12.

    Procyk R, Blomback B. Disulfide bond reduction in fibrinogen: calcium protection and effect on clottability. Biochemistry. 1990;29(6):1501–7.

    Article  Google Scholar 

  13. 13.

    Carr ME, Gabriel DA. Dextran-induced changes in fibrin fiber size and density based on wavelength dependence of gel turbidity. Macromolecules. 1980;13(6):1473–7.

    Article  Google Scholar 

  14. 14.

    Carr ME Jr, Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules. 1978;11(1):46–50.

    Article  Google Scholar 

  15. 15.

    Shah J, Janmey P. Strain hardening of fibrin gels and plasma clots. Rheol Acta. 1997;36(3):262–8.

    Article  Google Scholar 

  16. 16.

    Shah GA, Nair CH, Dhall DP. Comparison of fibrin networks in plasma and fibrinogen solution. Thromb Res. 1987;45(3):257–64.

    Article  Google Scholar 

  17. 17.

    Weisel J, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J. 1992;63(1):111.

    Article  Google Scholar 

  18. 18.

    Weisel J. Structure of fibrin: impact on clot stability. J Thromb Haemost. 2007;5(s1):116–24.

    Article  Google Scholar 

  19. 19.

    Yeromonahos C, Polack B, Caton F. Nanostructure of the fibrin clot. Biophys J. 2010;99(7):2018–27. doi:10.1016/j.bpj.2010.04.059.

    Article  Google Scholar 

  20. 20.

    Doolittle RF. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53(1):195–229. doi:10.1146/53.070184.001211.

    Article  Google Scholar 

  21. 21.

    Davis HE, Miller SL, Case EM, Leach JK. Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater. 2011;7(2):691–9. doi:10.1016/j.actbio.2010.09.007.

    Article  Google Scholar 

  22. 22.

    Ferry JD, Morrison PR. Preparation and Properties of serum and plasma proteins. VIII: the conversion of human fibrinogen to fibrin under various conditions 1,2. J Am Chem Soc. 1947;69(2):388–400. doi:10.1021/ja01194a066.

    Article  Google Scholar 

  23. 23.

    Wolberg A. Thrombin generation and fibrin clot structure. Blood Rev. 2007;21(3):131.

    Article  Google Scholar 

  24. 24.

    Janmey P, Winer J, Weisel J. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;6(30):9.

    Article  Google Scholar 

  25. 25.

    El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol. 2007;78(4):661–9. doi:10.1902/jop.2007.060302.

    Article  Google Scholar 

  26. 26.

    Everts PA, Overdevest EP, Jakimowicz JJ, Oosterbos CJ, Schonberger JP, Knape JT, et al. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery: a review. Surg Endosc. 2007;21(11):2063–8. doi:10.1007/s00464-007-9293-x.

    Article  Google Scholar 

  27. 27.

    Hom DB, Linzie BM, Huang TC. The healing effects of autologous platelet gel on acute human skin wounds. Arch Facial Plast Surg. 2007;9(3):174–83. doi:10.1001/archfaci.9.3.174.

    Article  Google Scholar 

  28. 28.

    Obata S, Akeda K, Imanishi T, Masuda K, Bae W, Morimoto R, et al. Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: a preclinical study. Arthritis Res Ther. 2012;14(6):R241.

    Article  Google Scholar 

  29. 29.

    Perez AG, Lichy R, Lana JFS, Rodrigues AA, Luzo ÂCM, Belangero WD, et al. Prediction and modulation of platelet recovery by discontinuous centrifugation of whole blood for the preparation of pure platelet-rich plasma. Biores Open Access. 2013;2(4):307–14. doi:10.1089/biores.2013.0015.

    Article  Google Scholar 

  30. 30.

    de Barros Neto B, Scarminio IS, Bruns RE. Planejamento e otimização de experimentos. 2nd ed. Campinas: Editora Unicamp; 2001.

    Google Scholar 

  31. 31.

    Filardo G, Kon E, Ruiz MTP, Vaccaro F, Guitaldi R, Di Martino A, et al. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: single-versus double-spinning approach. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2082–91.

    Article  Google Scholar 

  32. 32.

    Sánchez M, Guadilla J, Fiz N, Andia I. Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology. 2012;51(1):144–50.

    Article  Google Scholar 

  33. 33.

    Crovetti G, Martinelli G, Barone M, Guizzardi M, Campanati B, et al. Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci. 2004;30(2):145–51. doi:10.1016/j.transci.2004.01.004.

    Article  Google Scholar 

  34. 34.

    Blomback B, Carlsson K, Hessel B, Liljeborg A, Procyk R, Aslund N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim Biophys Acta. 1989;997(1–2):96–110.

    Article  Google Scholar 

  35. 35.

    Shah GA, Nair CH, Dhall DP. Physiological studies on fibrin network structure. Thromb Res. 1985;40(2):181–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the blood donors, and the Fundação de Amparo à Pesquisa do Estado de São Paulo for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria H. A. Santana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez, A.G.M., Rodrigues, A.A., Luzo, A.C.M. et al. Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time. J Mater Sci: Mater Med 25, 1967–1977 (2014). https://doi.org/10.1007/s10856-014-5235-z

Download citation

Keywords

  • Fibrinogen
  • Clotting Time
  • Fibrinogen Concentration
  • Autologous Serum
  • Central Composite Rotatable Design