Skip to main content

Advertisement

Log in

Correlation between primary stability and bone healing of surface treated titanium implants in the femoral epiphyses of rabbits

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse the stability and osseointegration of surface treated titanium implants in rabbit femurs. The implants were either grit-blasted and acid-etched (BE Group), calcium phosphate (CaP) coated by using the electrodeposition technique, or had bioactive molecules incorporated into the CaP coatings: either cyclic adenosine monophosphate (cAMP) or dexamethasone (Dex). Twenty four cylindrical titanium implants (n = 6/group) were inserted bilaterally into the femoral epiphyses of New Zealand White, female, adult rabbits for 4 weeks. Implant stability was measured by resonance frequency analysis (RFA) the day of implantation and 4 weeks later, and correlated to histomorphometric parameters, bone implant contact (BIC) and bone growth around the implants (BS/TS 0.5 mm). The BIC values for the four groups were not significantly different. That said, histology indicated that the CaP coatings improved bone growth around the implants. The incorporation of bioactive molecules (cAMP and Dex) into the CaP coatings did not improve bone growth compared to the BE group. Implant stability quotients (ISQ) increased in each group after 4 weeks of healing but were not significantly different between the groups. A good correlation was observed between ISQ and BS/TS 0.5 mm indicating that RFA is a non-invasive method that can be used to assess the osseointegration of implants. In conclusion, the CaP coating enhanced bone formation around the implants, which was correlated to stability measured by resonance frequency analysis. Furthers studies need to be conducted in order to explore the benefits of incorporating bioactive molecules into the coatings for peri-implant bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  2. Branemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977;16:1–132.

    Google Scholar 

  3. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant–tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7:261–7.

    Article  Google Scholar 

  4. Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res. 2009;20:1140–5.

    Article  Google Scholar 

  5. Friberg B, Sennerby L, Linden B, Gröndahl K, Lekholm U. Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg. 1999;28:266–72.

    Article  Google Scholar 

  6. Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20 month clinical study. Int J Oral Maxillofac Surg. 1999;28:297–303.

    Article  Google Scholar 

  7. Rasmusson L, Stegersjö G, Kahnberg KE, Sennerby L. Implant stability measurements using resonance frequency analysis in the grafted maxilla: a cross-sectional pilot study. Clin Oral Implants Res. 1999;1:70–4.

    Google Scholar 

  8. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NHJ. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496–500.

    Article  Google Scholar 

  9. de Jonge L, Leeuwenburgh S, Wolke J, Jansen J. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25:2357–69.

    Article  Google Scholar 

  10. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2007;4:535–43.

    Article  Google Scholar 

  11. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res. 1995;6:24–30.

    Article  Google Scholar 

  12. de Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxyapatite. J Biomed Mater Res. 1987;21:1375–81.

    Article  Google Scholar 

  13. Geesink R, Klein CP, de Groot K. Chemical implant fixation using hydroxyapatite coatings. Clin Orthop. 1987;225:147–69.

    Google Scholar 

  14. Geesink R, de Groot K, Klein CP. Bonding of bone to apatite-coated implants. J Bone Joint Surg. 1988;70:17–22.

    Google Scholar 

  15. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res. 2009;20:185–206.

    Article  Google Scholar 

  16. Geesink R. Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res. 2002;395:53–65.

    Article  Google Scholar 

  17. Wheeler S. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants. 1996;11:340–50.

    Google Scholar 

  18. Chang YL, Lew D, Park JB, Keller JC. Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying cristallinity. J Oral Maxillofac Surg. 1999;57:1096–108.

    Article  Google Scholar 

  19. Lee J, Rouhfar L, Beirne O. Survival of hydroxyl-coated implants: a meta-analytic review. J Oral Maxillofac Surg. 2000;58:1372–9.

    Article  Google Scholar 

  20. Tinsley D, Watson C, Russel J. A comparison of hydroxyapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin Oral Implants Res. 2001;12:159–66.

    Article  Google Scholar 

  21. Kokubo T, Kushitani H, Abe Y, Yamamuro T. Apatite coating on various substrates in simulated body fluid. Bioceramics. 1989;2:235–42.

    Google Scholar 

  22. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci Mater Med. 2001;12:529–34.

    Article  Google Scholar 

  23. Barrère F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B. 2003;67:655–65.

    Article  Google Scholar 

  24. Barrère F, Layrolle P, van Blitterswijk CA, de Groot K. Biomimetic calcium phosphate coating on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO -3 . Bone. 1999;25:107s–11s.

    Article  Google Scholar 

  25. Habibovic P, Barrère F, Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implant. J Am Ceram Soc. 2002;85:517–22.

    Article  Google Scholar 

  26. Lopez-Heredia M, Weiss P, Layrolle P. An electrodeposition method of calcium phosphate coatings on titanium alloy. J Mater Sci Mater Med. 2007;18:381–90.

    Article  Google Scholar 

  27. Le Guehennec L, Goyenvalle E, Lopez-Heredia M, et al. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphysis of rabbits. Clin Oral Implants Res. 2008;19:1103–10.

    Article  Google Scholar 

  28. Leeuwenburgh S, Layrolle P, Barrère F, et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res. 2001;56:208–15.

    Article  Google Scholar 

  29. Liu Y, Layrolle P, de Bruijn J, van Blitterswijk C, de Groot K. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001;57:327–35.

    Article  Google Scholar 

  30. Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36:745–57.

    Article  Google Scholar 

  31. Stadlinger B, Pilling E, Huhle M, et al. Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study. J Biomed Mater Res B. 2007;83:222–31.

    Article  Google Scholar 

  32. Stadlinger B, Pilling E, Huhle M, et al. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg. 2008;37:54–9.

    Article  Google Scholar 

  33. Schouten C, Meijer GJ, van den Beucken JJ, Spauwen PH, Jansen JA. Effects of implant geometry, surface properties, and TGF-beta1 on peri-implant bone response: an experimental study in goats. Clin Oral Implants Res. 2009;20:421–9.

    Article  Google Scholar 

  34. Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res. 2007;86(1):84–9.

    Article  Google Scholar 

  35. Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P. Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomater. 2013;9(6):7064–73.

    Article  Google Scholar 

  36. Peter B, Pioletti DP, Laïb S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60.

    Article  Google Scholar 

  37. Yang GL, Song LN, Jiang QH, Wang XX, Zhao SF, He FM. Effect of strontium-substituted nanohydroxyapatite coating of porous implant surfaces on implant osseointegration in a rabbit model. Int J Oral Maxillofac Implants. 2012;27(6):1332–9.

    Google Scholar 

  38. Siddappa R, Martens A, Doorn J, et al. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci. 2008;105:7281–6.

    Article  Google Scholar 

  39. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.

    Article  Google Scholar 

  40. Siddappa R, Fernandes H, Liu J, van Blitterswijk C, de Boer J. The response of human mesenchymal stem cells to osteogenic signals and its impact on bone tissue engineering. Curr Stem Cell Res Ther. 2007;2:209–20.

    Article  Google Scholar 

  41. Isogai Y, Akatsu T, Ishizuya T, et al. Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res. 1996;11:1384–93.

    Article  Google Scholar 

  42. Tintut Y, Parhami F, Boström K, Jackson SM, Demer LL. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem. 1998;273:7547–53.

    Article  Google Scholar 

  43. Siddappa R, Mulder W, Steeghs I, et al. cAMP/PKA signaling inhibits osteogenic differentiation and bone formation in rodent models. Tissue Eng A. 2009;15:2135–43.

    Article  Google Scholar 

  44. Diefenderfer DL, Osyczka AM, Reilly GC, Leboy PS. BMP responsiveness in human mesenchymal stem cells. Connect Tissue Res. 2003;44:305–11.

    Article  Google Scholar 

  45. Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS. Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells Tissues Organs. 2004;176:109–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Layrolle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozé, J., Hoornaert, A. & Layrolle, P. Correlation between primary stability and bone healing of surface treated titanium implants in the femoral epiphyses of rabbits. J Mater Sci: Mater Med 25, 1941–1951 (2014). https://doi.org/10.1007/s10856-014-5231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5231-3

Keywords

Navigation