Skip to main content

Advertisement

Log in

A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca–P-based electrolyte

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca–P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM–EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating–substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ. A review of dental implants and infection. J Hosp Infect. 2009;72(2):104–10.

    Article  Google Scholar 

  2. Jackson MJ, Ahmed W. Surface engineered surgical tools and medical devices. 1st ed. New York: Springer; 2007.

    Book  Google Scholar 

  3. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y. Acid pretreatment of titanium implants. Biomaterials. 2003;24(10):1821–7.

    Article  Google Scholar 

  4. de Sena LA, Calixto de Andrade M, Malta Rossi A, Almeida de Soares G. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J Biomed Mater Res Part A. 2002;60(1):1–7.

    Article  Google Scholar 

  5. Lee MH, Park IS, Min KS, Ahn SG, Park JM, Song KY, Park CW. Evaluation of in vitro and in vivo tests for surface-modified titanium by HSO and HO treatment. Met Mater Int. 2007;13(2):109–15.

    Article  Google Scholar 

  6. Peláez-Abellán E, Duarte LT, Biaggio SR, Rocha-Filho RC, Bocchi N. Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti. Mat Res. 2012;15(1):159–65.

    Article  Google Scholar 

  7. Santos A. Produção de filmes de óxido de titânio por oxidação anódica a microarco. Rio de Janeiro: Dissertação de Mestrado, Universidade Federal do Rio de Janeiro; 2008. p. 97.

    Google Scholar 

  8. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblasts responses. Biomaterials. 2004;25(18):4087–103.

    Article  Google Scholar 

  9. Marino CEB, Nascente PAP, Biaggio SR, Rocha-Filho RC, Bocchi N. XPS characterization of anodic titanium oxide films grown in phosphate buffer solutions. Thin Solid Films. 2004;468(1–2):109–12.

    Article  Google Scholar 

  10. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25(6):1003–10.

    Article  Google Scholar 

  11. de Sena LA, Rocha NCC, Andrade MC, Soares GA. Bioactivity assessment of titanium sheets electrochemically coated with thick oxide film. Surf Coat Technol. 2003;166(2–3):254–8.

    Article  Google Scholar 

  12. Han Y, Hong SH, Xu K. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf Coat Technol. 2003;168(2–3):249–58.

    Article  Google Scholar 

  13. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong YS, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23(2):491–501.

    Article  Google Scholar 

  14. Schreckenbach JP, Marx G, Schlottig F, Textor FM, Spencer ND. Characterization of anodic spark-converted titanium surfaces for biomedical applications. J Mater Sci Mater Med. 1999;10(8):453–7.

    Article  Google Scholar 

  15. Armitage DA, Mihoc R, Tate TJ, McPhail DS, Chater R, Hobkirk JA, Shinawi L, Jones FH. The oxidation of calcium implanted titanium in water: a depth profiling study. Appl Surf Sci. 2007;253(8):4085–93.

    Article  Google Scholar 

  16. Fröjd V, Wennerberg A, Stenport VF. Importance of Ca2+ modifications for osseointegration of smooth and moderately rough anodized titanium implants—a removal torque and histological evaluation in rabbit. Clin Implant Dent Relat Res. 2012;14(5):737–45.

    Article  Google Scholar 

  17. Park IS, Lee MH, Bae TS, Seol KW. Effects of anodic oxidation parameters on a modified titanium surface. J Biomed Mater Res Part B. 2008;84(2):422–9.

    Article  Google Scholar 

  18. Frauchiger VM, Schlottig F, Gasser B, Textor M. Anodic plasma-chemical treatment of CP titanium surface for biomedical applications. Biomaterials. 2004;25(4):593–606.

    Article  Google Scholar 

  19. Li LH, Kong YM, Kim HW, Kim HE, Heo SJ, Koak JY. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25(14):2867–75.

    Article  Google Scholar 

  20. Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters and nanoparticles. In: Proceedings of the National Academy of Sciences of the United States of America. 2004, 33rd ed. pp. 12096–101.

  21. Abdullah HZ, Sorrell CC. Preparation and characterization of TiO2 thick films fabricated by anodic oxidation. Mater Sci Forum. 2007;561–565:2159–62.

    Article  Google Scholar 

  22. Coelho AA. TOPAS Academic Users Manual, 2005. http://www.topas-academic.net/. Accessed 03 Apr 2014.

  23. Cochran DL, Simpson J, Weber H, Buser D. Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofacc Implant. 1994;9(3):289–97.

    Google Scholar 

  24. Nishimoto SK, Nishimoto M, Park SW, Lee KM, Kim HS, Koh JT, Ong JL, Liu Y, Yang Y. The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. Int J Oral Maxillofacc Implant. 2008;23(4):675–80.

    Google Scholar 

  25. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwarts Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19(23):2219–32.

    Article  Google Scholar 

  26. Yu S, Yang X, Yang L, Liu Y, Yu Y. Novel technique for preparing Ca- and P-containing ceramic coating on Ti-6Al-4 V by micro-arc oxidation. J Biom Mat Res Part B Appl Biomater. 2007;83(2):623–7.

    Article  Google Scholar 

  27. Liu F, Wang F, Shimizu T, Igarashi K, Zhao L. Formation of hydroxyapatite on Ti–6Al–4 V alloy by microarc oxidation and hydrothermal treatment. Surf Coat Technol. 2005;199(2–3):220–4.

    Article  Google Scholar 

  28. Swamy V, Kuznetsov A, Dubrovinsky LS, Caruso RA, Shchukin DG, Muddle BC. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys Rev B. 2005;71:184–302.

    Article  Google Scholar 

  29. Kim KH, Ramaswamy N. Electrochemical surface modification of titanium in dentistry. Dent Mater J. 2009;28(1):20–36.

    Article  Google Scholar 

  30. Zhu X, Ong JL, Kim S, Kim K. Surface characteristics and structure of anodic oxide films containing Ca and P on a titanium implant material. J Biomed Mater Res. 2002;60(2):333–8.

    Article  Google Scholar 

  31. Zhu X, Kim KH, Jeong Y. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials. 2001;22(16):2199–206.

    Article  Google Scholar 

  32. NIST-National Institute of Standards and Technology. X-ray photoelectron spectroscopy database, USA. 2013. Available at: http://srdata.nist.gov/xps/. Accessed 15 May 2013.

  33. de Souza GB, de Lima GG, Kuromoto NK, Soares P, Lepienski CM, Foerster CE, Mikowski A. Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. J Mech Behav Biomed Mater. 2011;4(5):796–806.

    Article  Google Scholar 

  34. Yan Y, Sun J, Han Y, Li D, Cui K. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf Coat Technol. 2010;205(6):1702–13.

    Article  Google Scholar 

  35. Abbasi S, Bayati MR, Golestani-Fard F, Rezaei HR, Zargar HR, Samanipour F, Shoaei-Rad V. Micro arc oxidized HAp-TiO2 nanostructured hybrid layers–part I: effect of voltage and growth time. Appl Surf Sci. 2011;257(14):5944–9.

    Article  Google Scholar 

  36. Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Difference in surface reactions between titanium and zirconium in Hank’s solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mat Sci Eng C. 2009;29(5):1702–8.

    Article  Google Scholar 

  37. Horowitz E, Parr JE. Characterization and performance of calcium phosphate coatings for implants. Philadelphia: ASTM Publication N 04-011960-54, American Society for Testing and Materials; 1994.

    Book  Google Scholar 

  38. Roguska A, Pisarek M, Andrzejczuk M, Dolata M, Lewandowska M, Janik-Czachor M. Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications. Mat Sci Eng C. 2011;31(5):906–14.

    Article  Google Scholar 

  39. Maxian SH, Zawadsky JP, Dunn MG. Effect of Ca/P coating resorption and surgical fit on the bone/implant interface. J Biomed Mater Res. 1994;28(11):1311–9.

    Article  Google Scholar 

  40. Feitosa VP, Bazzocchi MG, Putignano A, Orsini G, Luzi AL, Sinhoreti MA, Watson TF, Sauro S. Dicalcium phosphate (CaHPO4–2H2O) precipitation through ortho- or meta-phosphoric acid-etching: effects on the durability and nanoleakage/ultra-morphology of resin-dentine interfaces. J Dent. 2013;41(11):1068–80.

    Article  Google Scholar 

  41. Praveen P, Viruthagiri G, Mugundan S, Shanmugam N. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles—synthesized via sol-gel route. Spectrochim Acta A Mol Biomol Spectrosc. 2014;117:622–9.

    Article  Google Scholar 

  42. Socrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. New York: John Wiley and Sons; 2001.

    Google Scholar 

  43. Ohtsu N, Hiromoto S, Yamane M, Satoh K, Tomozawa M. Chemical and crystallographic characterizations of hydroxyapatite- and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD. Surf Coat Technol. 2013;218:114–8.

    Article  Google Scholar 

  44. Ide-Ektessabi A, Yamaguchi T, Tanaka Y. RBS and XPS analyses of the composite calcium phosphate coatings for biomedical applications. Nucl Instrum Meth B. 2005;241(1–4):685–8.

    Article  Google Scholar 

  45. Roura P, Fort J. Local thermodynamic derivation of Young’s equation. J Colloid Interface Sci. 2004;272(2):420–9.

    Article  Google Scholar 

  46. Chow TS. Wetting of rough surfaces. J Phys Condens Mat. 1998;10(27):L445.

    Article  Google Scholar 

  47. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–94.

    Article  Google Scholar 

  48. Coutinho MP, Elias CN. Rugosidade e molhabilidade do titânio usado em implantes dentários com superfícies tratadas. Rev Bras Odontol. 2009;66(2):234–8.

    Google Scholar 

  49. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.

    Article  Google Scholar 

  50. Bico J, Thiele U, Quéré D. Wetting of textured surfaces. Colloid Surf A. 2002;206(1–3):41–6.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to INMETRO for allowing this study to be conducted in its facilities, especially in Labit. We thank Dr. Erlon H. M. Ferreira for providing us with the Raman analysis; Leandro R. Lidízio for acquiring the MEV figures; and Carlos A. Senna for the FIB measurements. Lidia A. Sena thanks the CNPq for the fellowship (PROMETRO/CNPq 370823/2011-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, A., Araujo, J.R., Landi, S.M. et al. A study of the physical, chemical and biological properties of TiO2 coatings produced by micro-arc oxidation in a Ca–P-based electrolyte. J Mater Sci: Mater Med 25, 1769–1780 (2014). https://doi.org/10.1007/s10856-014-5207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5207-3

Keywords

Navigation