Skip to main content
Log in

Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To develop Ti implants with potent antibacterial activity, a novel “sandwich-type” structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and –HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  Google Scholar 

  2. Hickok NJ, Shapiro IM. Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev. 2012;64:1165–76.

    Article  Google Scholar 

  3. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces. 2012;4:1341–9.

    Article  Google Scholar 

  4. Fei J, Liu GD, Pan CJ, Chen JY, Zhou YG, Xiao SH, Wang Y, Yu HJ. Preparation, release profiles and antibacterial properties of vancomycin-loaded Ca–P coating titanium alloy plate. J Mater Sci Mater Med. 2011;22:989–95.

    Article  Google Scholar 

  5. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91:470–80.

    Article  Google Scholar 

  6. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.

    Article  Google Scholar 

  7. Zheng YF, Zhang BB, Wang BL, Wang YB, Li L, Yang QB, Cui LS. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011;7:2758–67.

    Article  Google Scholar 

  8. Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA. Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med. 2013;24:2129–35.

    Article  Google Scholar 

  9. Zheng Y, Li J, Liu X, Sun J. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomed. 2012;7:875–84.

    Google Scholar 

  10. Li B, Liu X, Cao C, Dong Y, Ding C. Biological and antibacterial properties of plasma sprayed wollastonite/silver coatings. J Biomed Mater Res B Appl Biomater. 2009;91:596–603.

    Article  Google Scholar 

  11. Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31:680–90.

    Article  Google Scholar 

  12. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev. 2011;111:3669–712.

    Article  Google Scholar 

  13. Bedel L, Cayron C, Jouve M, Maury F. Embedded layer of Ag nanoparticles prepared by a combined PECVD/PVD process producing SiOxCy–Ag nanocomposite thin films. Nanotechnology. 2012;23:015603.

    Article  Google Scholar 

  14. Visai L, De Nardo L, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs. 2011;34:929–46.

    Article  Google Scholar 

  15. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.

    Article  Google Scholar 

  16. Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.

    Article  Google Scholar 

  17. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–90.

    Article  Google Scholar 

  18. Yuan WY, Lu ZS, Li CM. Charged drug delivery by ultrafast exponentially grown weak polyelectrolyte multilayers: amphoteric properties, ultrahigh loading capacity and pH-responsiveness. J Mater Chem. 2012;22:L9351–7.

    Article  Google Scholar 

  19. de Villiers MM, Otto DP, Strydom SJ, Lvov YM. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev. 2011;63:701–15.

    Article  Google Scholar 

  20. Wong SY, Moskowitz JS, Veselinovic J, Rosario RA, Timachova K, Blaisse MR, et al. Dual functional polyelectrolyte multilayer coatings for implants: permanent microbicidal base with controlled release of therapeutic agents. J Am Chem Soc. 2010;132:17840–8.

    Article  Google Scholar 

  21. Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock RE, Kizhakkedathu JN. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32:3899–909.

    Article  Google Scholar 

  22. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010;31:2348–57.

    Article  Google Scholar 

  23. Fu J, Ji J, Yuan W, Shen J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials. 2005;26:6684–92.

    Article  Google Scholar 

  24. Shen L, Wang B, Wang J, Fu J, Picart C, Ji J. Asymmetric free-standing film with multifunctional anti-bacterial and self-cleaning properties. ACS Appl Mater Interfaces. 2012;4:4476–83.

    Article  Google Scholar 

  25. Eby DM, Luckarift HR, Johnson GR. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces. 2009;1:1553–60.

    Article  Google Scholar 

  26. He T, Chan V. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications. J Biomed Mater Res A. 2010;95:454–64.

    Article  Google Scholar 

  27. Wu J, Hou S, Ren D, Mather PT. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules. 2009;10:2686–93.

    Article  Google Scholar 

  28. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    Article  Google Scholar 

  29. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60:1–7.

    Article  Google Scholar 

  30. Park E, Kim H, Song J, Oh H, Song H, Jang J. Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromol Res. 2012;20:1096–101.

    Article  Google Scholar 

  31. Zhang H, Qadeer A, Chen W. In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran. Biomacromolecules. 2011;12:1428–37.

    Article  Google Scholar 

  32. Liu S, Ng AK, Xu R, Wei J, Tan CM, Yang Y, Chen Y. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale. 2010;2:2744–50.

    Article  Google Scholar 

  33. Liu N, Chen XG, Park HG, Liu CG, Liu CS, Meng XH, Yu LJ. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym. 2006;64:60–5.

    Article  Google Scholar 

  34. Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, Hou Y, Huang Y, Li J, Ding X, Zhang B, Sung KL. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces. Biomaterials. 2012;33:3515–28.

    Article  Google Scholar 

  35. Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci. 2009;37:198–206.

    Article  Google Scholar 

  36. Cai K, Hu Y, Luo Z, Kong T, Lai M, Sui X, Wang Y, Yang L, Deng L. Cell-specific gene transfection from a gene-functionalized poly(d,l-lactic acid) substrate fabricated by the layer-by-layer assembly technique. Angew Chem Int Ed Engl. 2008;47:7479–81.

    Article  Google Scholar 

  37. Shu S, Zhang X, Wu Z, Wang Z, Li C. Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials. 2010;31:6039–49.

    Article  Google Scholar 

  38. Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem. 2008;19:1248–55.

    Article  Google Scholar 

  39. Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD. Polysaccharide–protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials. 2005;26:5960–71.

    Article  Google Scholar 

  40. Chang S, Combs ZA, Gupta MK, Davis R, Tsukruk VV. In situ growth of silver nanoparticles in porous membranes for surface-enhanced Raman scattering. ACS Appl Mater Interfaces. 2010;2:3333–9.

    Article  Google Scholar 

  41. Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007;2:2182–90.

    Article  Google Scholar 

  42. Gan W, Xu B, Dai HL. Activation of thiols at a silver nanoparticle surface. Angew Chem Int Ed Engl. 2011;50:6622–5.

    Article  Google Scholar 

  43. Gan W, Gonella G, Zhang M, Dai HL. Reactions and adsorption at the surface of silver nanoparticles probed by second harmonic generation. J Chem Phys. 2011;134:0411040–1.

    Google Scholar 

  44. Lichter JA, Van Vliet KJ, Rubner MF. Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules. 2009;42:8573–86.

    Article  Google Scholar 

  45. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett. 2012;208:286–92.

    Article  Google Scholar 

  46. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Google Scholar 

  47. Peetsch A, Greulich C, Braun D, Stroetges C, Rehage H, Siebers B, Köller M, Epple M. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf B Biointerfaces. 2013;102:724–9.

    Article  Google Scholar 

  48. Shi Z, Neoh KG, Zhong SP, Yung LY, Kang ET, Wang W. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel. J Biomed Mater Res A. 2006;76:826–34.

    Article  Google Scholar 

  49. Wang QF, Zhong L, Sun JQ, Shen JC. Incorporation of silver ions into ultrathin titanium phosphate. Chem Mater. 2006;18:1988–94.

    Article  Google Scholar 

  50. Cao H, Liu X, Meng F, Chu PK. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials. 2011;32:693–705.

    Article  Google Scholar 

  51. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–24.

    Article  Google Scholar 

  52. Cao H, Qiao Y, Liu X, Lu T, Cui T, Meng F, Chu PK. Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better. Acta Biomater. 2013;9:5100–10.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Chongqing Municipal Government (CSTC, 2011JJJQ10004 and JJA10056), China Ministry of Science and Technology (973 Project No. 2009CB930000), Natural Science Foundation of China (51173216 and 31200712), National Key Technology R&D Program of the Ministry of Science and Technology (2012BAI18B04) and the “111” project (B06023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xu, D., Hu, Y. et al. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. J Mater Sci: Mater Med 25, 1435–1448 (2014). https://doi.org/10.1007/s10856-014-5190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5190-8

Keywords

Navigation