Skip to main content
Log in

Electrodeposition of nanostructured bioactive hydroxyapatite-heparin composite coatings on titanium for dental implant applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this paper we describe the one-pot fabrication of hydroxyapatite (HA)-heparin composites by electrodeposition onto Ti substrates and their characterisation in terms of structure, morphology, heparin content and bioactivity. HA coatings are well known and widely applied osteointegration enhancers, but post-implant healing rate in dental applications is still suboptimal: e.g. coagulation control plays a key role and the incorporation of an anticoagulant is considered a highly desirable option. In this study, we have developed an improved, simple and robust growth procedure for single-phase, pure HA-heparin films of thickness 1/3 μm. HA-heparin, forming nanowires, has the ideal morphology for bone mineralisation. Staining assays revealed homogeneous incorporation of sizable amounts of heparin in the composite films. The bioactivities of the HA and HA-heparin coatings on Ti were compared by HeLa cell proliferation/viability tests and found to be enhanced by the presence of the anticoagulant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takebe J, Itoh S, Okada J, Ishibashi K. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J Biomed Mater Res. 2000;51:398–407.

    Article  Google Scholar 

  2. Kar A, Raja KS, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coat Technol. 2006;201:3723–31.

    Article  Google Scholar 

  3. Bozzini B, Carlino P, D’Urzo L, Pepe V, Mele C, Venturo F. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci Mater Med. 2008;19:3443–53.

    Article  Google Scholar 

  4. Bozzini B, Carlino P, Mele C. Electrochemical behaviour and surface characterisation of Zr exposed to an SBF solution containing glycine, in view of dental implant applications. J Mater Sci Mater Med. 2011;22:193–200.

    Article  Google Scholar 

  5. Jones JD, Lupori J, Van Sickels JE, Gardner W. A 5-year comparison of hydroxyapatite-coated titanium plasma–sprayed and titanium plasma–sprayed cylinder dental implants. Oral Surg Oral Med Oral Pathol. 1999;87:647–52.

    Article  Google Scholar 

  6. Raja KS, Misra M, Paramguru K. Deposition of calcium phosphate coating on nanotubular anodized titanium. Mater Lett. 2005;59:2137–41.

    Article  Google Scholar 

  7. Huang L, Xu K. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J Mater Sci. 2000;11:667–73.

    Google Scholar 

  8. Zhu X, Son DW, Ong JL, Kim K. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium. J Mater Sci. 2003;14:629–34.

    Google Scholar 

  9. Chen JS, Juang HY, Hon MH. Calcium phosphate coating on titanium substrate by a modified electrocrystallization process. J Mater Sci Mater Med. 1998;9:297–300.

    Article  Google Scholar 

  10. Manso M, Jiménez C, Morant C, Herrero P, Martìnez-Duart JM. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials. 2000;21:1755–61.

    Article  Google Scholar 

  11. Kuo MC, Yen SK. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C. 2002;20:153–60.

    Article  Google Scholar 

  12. Chen X, Zhao Z, Chen A, Li H. Pulsed electrodeposition of hydroxyapatite on titanium substrate in solution containing hydrogen peroxide. Trans Nonferrous Metals Soc China. 2007;17:617–21.

    Article  Google Scholar 

  13. Lin D-Y, Wang X-X. Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Ceram Int. 2011;37:403–6.

    Article  Google Scholar 

  14. dos Santos EA, Moldovan MS, Jacomine L, Matescu M, Werckmann J, Ansekme K, Mille P, Pelletier H. Oriented hydroxyapatite single crystals produced by the electrodeposition method. Mater Sci Eng B. 2010;169:138–44.

    Article  Google Scholar 

  15. Shirkhanzadeh M. Direct formation of nanophase hydroxyapatite on cathodically polarized electrodes. J Mater Sci Mater Med. 1998;9:67–72.

    Article  Google Scholar 

  16. Ban S. S. Maruno S. Hydrothermal–electrochemical deposition of hydroxyapatite. J Biomed Mater Res. 1998;42:387–95.

    Article  Google Scholar 

  17. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  Google Scholar 

  18. Lemma ED. Electrodeposition of hydroxyapatite for dental applications. MSc Thesis, Università del Salento, Italy; 2012.

  19. Tanzi MC. Bioactive technologies for hemocompatibility. Expert Rev Med Devices. 2005;2:473–92.

    Article  Google Scholar 

  20. Zhao DM, Wang YX, Chen ZY, Xu RW, Wu G, Yu DS. Preparation and characterization of modified hydroxyapatite particles by heparin. Biomed Mater. 2008;3:025016.

    Article  Google Scholar 

  21. Sun F, Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite–chitosan–heparin coatings. J Mater Process Technol. 2009;209:1597–606.

    Article  Google Scholar 

  22. Hirsh J. Heparin. N Engl J Med. 1991;324:1565–74.

    Article  Google Scholar 

  23. Weitz JI. Low-molecular weight heparins. N Engl J Med. 1997;337:688–98.

    Article  Google Scholar 

  24. Hirsh J, Anand SS, Halperin JL, Fuster V. Guide to anticoagulant therapy: heparin. Circulation. 2001;103:2994–3018.

    Article  Google Scholar 

  25. Baglin T, Barrowcliffe TW, Cohen A, Greaves M. Guidelines on the use and monitoring of heparin. Br J Haematol. 2006;133:19–34.

    Article  Google Scholar 

  26. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122:743–52.

    Article  Google Scholar 

  27. Capila I, Linhardt RJ. Heparin—protein interactions. Angew Chem Int Ed. 2002;41:390–412.

    Article  Google Scholar 

  28. Cornelius RM, Sanchez J, Olsson P, Brash JL. Interactions of antithrombin and proteins in the plasma contact activation system with immobilized functional heparin. J Biomed Mater Res A. 2003;67:475–83.

    Article  Google Scholar 

  29. Ma R, Sask KN, Shi C, Brashc JL, Zhitomirsky I. Electrodeposition of polypyrrole-heparin and polypyrrole-hydroxyapatite films. Mater Lett. 2001;65:681–4.

    Article  Google Scholar 

  30. Kim SE, Song SH, Yun YP, Choi BJ, Kwon IK, Bae MS, Moon HJ, Kwon YD. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials. 2011;32:366–73.

    Article  Google Scholar 

  31. Broggini N, Tosatti S, Ferguson SJ, Schuler M, Textor M, Bornstein MM, Bosshardt DD, Buser D. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. J Biomed Mater Res A. 2012;100:703–11.

    Article  Google Scholar 

  32. Cacciatore P, Hallam K-R, Watkinson A-C, Allen G-C, Miles M-J, Jandt K-D. Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. Surf Sci. 2001;491:405–20.

    Article  Google Scholar 

  33. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res. 2001;12:515–25.

    Article  Google Scholar 

  34. Sul Y-T, Johansson C-B, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2011;23:491–501.

    Article  Google Scholar 

  35. Rønold H-J, Lyngstadaas S-P, Ellingsen J-E. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials. 2003;24:4559–64.

    Article  Google Scholar 

  36. Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials. 2004;25:1429–38.

    Article  Google Scholar 

  37. Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminium oxide. Int J Oral Maxillofac Implants. 1996;11:38–45.

    Google Scholar 

  38. Wennerberg A, Albrektsson T. Implant surface beyon micron roughness. experimental and clinical knowledge of surface topography and surface. Int Dent. 2006;8:14–8.

    Google Scholar 

  39. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinion. Int J Oral Maxillofac Implants. 2009;24:63–74.

    Google Scholar 

  40. Marcio Borges R, Albrektsson T, Francischone C-E, Schwartz Filho H-O, Wennerberg A. The influence of surface treatment in the implant roughness pattern. J Appl Oral Sci. 2012;20:550–5.

    Article  Google Scholar 

  41. Ribarsky MW. Titanium Dioxide (TiO2) (Rutile). In: Palik ED, editor. Handbook of optical constants of solids. Orlando: Academic Press; 1985. p. 795–800.

    Chapter  Google Scholar 

  42. Inagaki M, Yokogawa Y, Kasmeyama T. Bond strength improvement of hydroxyapatite/titanium composite coating by partial nitriding during RF-thermal plasma sprying. Surf Coat Technol. 2003;173:1–8.

    Article  Google Scholar 

  43. Albayrak O, El-Atwani O, Altintas S. Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effect of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf Coat Technol. 2008;202:2482–7.

    Article  Google Scholar 

  44. Gonzalez-McQuire R, Tsetsekou A. Hydroxyapatite-biomolecule coatings onto titanium surfaces. Surf Coat Technol. 2008;203:186–90.

    Article  Google Scholar 

  45. Wissink MJ, Beernink R, Pieper JS, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials. 2001;22:151–63.

    Article  Google Scholar 

  46. Smith PK, Mallia AK, Hermanson GT. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal Biochem. 1980;109:466–73.

    Article  Google Scholar 

  47. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;165:55–63.

    Article  Google Scholar 

  48. Muller RH. Techniques for characterization of electrodes and electrochemical processes. New York: Wiley; 1991. p. 31–126.

    Google Scholar 

  49. Hassannejad H, Mele C, Shahrabi T, Bozzini B. Electrodeposition of Ni/ceria composites: an in situ visible reflectance investigation. J Solid State Electrochem. 2012;16:3429–41.

    Article  Google Scholar 

  50. Stoica TF, Morosanu C, Slav A, Stoica T, Osiceanu P, Anastasescu C, Gartner M, Zaharescu M. Hydroxyapatite films obtained by sol–gel and sputtering. Thin Solid Films. 2008;516:8112–6.

    Article  Google Scholar 

  51. Hemissi M, Amardjia-Adnani H. Optical and structural properties of titanium oxide thin films prepared by sol–gel method. Dig J Nanomater Biostruct. 2007;2:299–305.

    Google Scholar 

  52. Liu Y, Liu CY, Wei JH, Xiong R, Pan CX, Shi J. Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO2 powders. Appl Surf Sci. 2010;256:6390–4.

    Article  Google Scholar 

  53. Santos O, Kosoric J, Hector MP, Anderson P, Lindh L. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. J Colloid Interf Sci. 2008;318:175–82.

    Article  Google Scholar 

  54. de Araujo TS, de Souza SO, de Sousa EMB, Araujo MS. Production and thermal stability of pure and Cr3+-doped hydroxyapatite. J Phys. 2010;249:012012.

    Google Scholar 

  55. Zhao X, Yang L, Zuo Y, Xiong J. Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid. Chin J Chem Eng. 2009;17:667–71.

    Article  Google Scholar 

  56. Ye W, Wang XX. Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Mater Lett. 2007;61:4062–5.

    Article  Google Scholar 

  57. Hu R, Lin CJ, Shi HY. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate. J Biomed Mater Res A. 2006;80:687–92.

    Google Scholar 

  58. Chen F, Zhu YJ, Wang KW, Zhao KL. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. Cryst Eng Commun. 2011;13:1858–63.

    Article  Google Scholar 

  59. Zhao H, Dong W, Zheng Y, Liu A, Yao J, Li C, Tang W, Chen B, Wang G, Shi Z. The structural and biological properties of hydroxyapatite-modified titanante nanowire scaffolds. Biomaterials. 2011;32:5837–46.

    Article  Google Scholar 

  60. Costa DO, Dixon SJ, Rizkalla AS. One- and three-dimensional growth of hydroxyapatite nanowires during sol–gel-hydrothermal synthesis. Appl Mater Interfaces. 2012;4:1490–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Bozzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzini, B., Barca, A., Bogani, F. et al. Electrodeposition of nanostructured bioactive hydroxyapatite-heparin composite coatings on titanium for dental implant applications. J Mater Sci: Mater Med 25, 1425–1434 (2014). https://doi.org/10.1007/s10856-014-5186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5186-4

Keywords

Navigation