Effects of the polymeric niche on neural stem cell characteristics during primary culturing

  • Stefan Haubenwallner
  • Matthias Katschnig
  • Ulrike Fasching
  • Silke Patz
  • Christa Trattnig
  • Natascha Andraschek
  • Gerda Grünbacher
  • Markus Absenger
  • Stephan Laske
  • Clemens Holzer
  • Werner Balika
  • Manuela Wagner
  • Ute SchäferEmail author


The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.


Contact Angle Methylene Blue PMMA Plasma Treatment Neuronal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cyclic olefin polymer






Polylactic acid





Polymeric niche

Chemical and physical polymer surface characteristics encountered by cultured cells



We thank Paul Freudenberger for his support and helpful comments. This work was supported by a FFG grant (Project Number 824915).

Supplementary material

10856_2014_5155_MOESM1_ESM.ppt (112 kb)
Fig. S1 Mean values (n = 6) obtained after 2 h to create a standard curve starting with 2 × 103–3.2 × 106 cells for the generation of a linear equation y = mx + b.; n = 4. Supplementary material 1 (PPT 108 kb)
10856_2014_5155_MOESM2_ESM.ppt (846 kb)
Fig. S2 AFM 3-D surface images of treated and untreated polymers. Supplementary material 2 (PPT 843 kb)
10856_2014_5155_MOESM3_ESM.ppt (138 kb)
Fig. S3 Time dependent hydrophobic recovery of treated polymers a Time dependent changes in contact angles of corona treated polymers b Time dependent changes in contact angles of plasma treated polymers; n = 12 for each data set. Supplementary material 3 (PPT 134 kb)


  1. 1.
    Meredith JC, Sormana JL, Keselowsky BG, Garcia AJ, Tona A, et al. Combinatorial characterization of cell interactions with polymer surfaces. J Biomed Mater Res A. 2003;66:483–90.CrossRefGoogle Scholar
  2. 2.
    del Valle LJ, Estrany F, Armelin E, Oliver R, Aleman C. Cellular adhesion, proliferation and viability on conducting polymer substrates. Macromol Biosci. 2008;8:1144–51.CrossRefGoogle Scholar
  3. 3.
    Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.CrossRefGoogle Scholar
  4. 4.
    Higham M, Short R, Szabo M, Dawson R, MacNeil S. A plasma polymer surface for the co-culture of human dermal fibroblasts and human epidermal keratinocytes for wound healing. Eur Cells Mater. 2002;4:36–7.Google Scholar
  5. 5.
    Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials. 2006;27:4098–108.CrossRefGoogle Scholar
  6. 6.
    Amstein CF, Hartman PA. Adaptation of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol. 1975;2:46–54.Google Scholar
  7. 7.
    Curtis ASG, Forrester JV, McInnes C, Lawrie F. Adhesion of cells to polystyrene surfaces. J Cell Biol. 1983;97:1500–6.CrossRefGoogle Scholar
  8. 8.
    Bacakova L, Mares V, Lisa V, Svorcik V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21:1173–9.CrossRefGoogle Scholar
  9. 9.
    Yang J, Mei Y, Hook AL, Taylor M, Urquhart AJ, Bogatyrev SR, et al. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays. Biomaterials. 2010;31:8827–38.CrossRefGoogle Scholar
  10. 10.
    Kaibara M, Iwata H, Wada H, Kawamoto Y, Iwaki M, Suzuki Y. Promotion and control of selective adhesion and proliferation of endothelial cells on polymer surface by carbon deposition. J Biomed Mater Res. 1996;31:429–35.CrossRefGoogle Scholar
  11. 11.
    Bacakova L, Svorcik V, Rybka V, Micek I, Hnatowicz V, Lisa V, et al. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: correlation with polymer surface polarity and carbonization. Biomaterials. 1996;17:1121–6.CrossRefGoogle Scholar
  12. 12.
    Zhang N, Kohn DH. Using polymeric materials to control stem cell behavior for tissue regeneration. Birth Defects Res C. 2012;96:63–81.CrossRefGoogle Scholar
  13. 13.
    Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Spatial control of protein within biomimetically nucleated mineral. Biomaterials. 2006;27:1175–86.CrossRefGoogle Scholar
  14. 14.
    Zhang K, Wang H, Huang C, Su Y, Mo X, Ikada Y. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A. 2010;93:984–93.Google Scholar
  15. 15.
    Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31:9135–44.CrossRefGoogle Scholar
  16. 16.
    Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechol. 2010;28:581–3.CrossRefGoogle Scholar
  17. 17.
    Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer–media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32:6912–9.CrossRefGoogle Scholar
  18. 18.
    Croitoru-Lamoury J, Williams KR, Lamoury FM, Veas LA, Ajami B, Taylor RM, et al. Neural transplantation of human MSC and NT2 cells in the twitcher mouse model. Cryotherapy. 2006;8:445–58.CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Wang S. Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum Gene Ther. 2010;21:683–94.CrossRefGoogle Scholar
  20. 20.
    Podrygajlo G, Wiegreffe C, Scaal M, Bicker G. Integration of human model neurons (NT2) into embryonic chick nervous system. Dev Dyn. 2010;239:496–504.CrossRefGoogle Scholar
  21. 21.
    Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, et al. The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci. 2003;24:198–213.CrossRefGoogle Scholar
  22. 22.
    Pleasure SJ, Lee VM. NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res. 1993;35:585–602.CrossRefGoogle Scholar
  23. 23.
    Kendall MG, Stuart A. The Advanced Theory of Statistics, vol 2, inference and relationship. New York: Hafner Publishing Company Inc.; 1973.Google Scholar
  24. 24.
    Rahman NA. A Course in theoretical statistics. New York: Hafner Publishing Co.; 1968.Google Scholar
  25. 25.
    Rodgers JL, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat. 1988;42:59–66.CrossRefGoogle Scholar
  26. 26.
    Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B. 2007;60:137–57.CrossRefGoogle Scholar
  27. 27.
    Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310:1135–8.CrossRefGoogle Scholar
  28. 28.
    Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74:69–117.CrossRefGoogle Scholar
  29. 29.
    Horbett TA, Schway MB, Ratner BD. Hydrophilic-hydrophobic copolymers as cell substrates-effect on 3T3 cell-growth rates. J Colloid Interface Sci. 1985;104:28–39.CrossRefGoogle Scholar
  30. 30.
    Vanwachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, Vanaken WG. Interaction of cultured human-endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–8.CrossRefGoogle Scholar
  31. 31.
    Vanwachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, et al. Adhesion of cultured human-endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials. 1987;8:323–8.CrossRefGoogle Scholar
  32. 32.
    Lee JH, Khang G, Lee JW, Lee HB. Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci. 1998;205:323–30.CrossRefGoogle Scholar
  33. 33.
    Dudek MM, Gandhirama RP, Volcke C, Cafolla AA, Daniels S, Killard AJ. Plasma surface modification of cyclo-olefin polymers and its application to lateral flow bioassays. Langmuir. 2009;25:11155–61.CrossRefGoogle Scholar
  34. 34.
    Osswald TA, Turng L-S, Gramann PJ. Injection molding handbook. Munich: Hanser Verlag; 2008.Google Scholar
  35. 35.
    Domininghaus H. Plastics for engineers: materials, properties, applications. Cincinnati: Hanser Gardner; 2000.Google Scholar
  36. 36.
    Lambert BJ, Tang F-W, Rogers WJ. Polymers in medical applications. Rapra Review Reports; 2001.Google Scholar
  37. 37.
    Davis JR. Handbook of materials for medical devices. Materials Park: ASM International; 2003.Google Scholar
  38. 38.
    Langlois A, Duval D. Differentiation of the human NT2 cells into neurons and glia. Methods in Cell Sci. 1997;19:213–9.CrossRefGoogle Scholar
  39. 39.
    Pascual M, Balart R, Sanchez L, Fenollar O, Calvo O. Study of the aging process of corona discharge plasma effects on low density polyethylene film surface. J Mater Sci. 2008;43:4901–9.CrossRefGoogle Scholar
  40. 40.
    Jacobs T, Declercq H, De Geyter N, Cornelissen R, Dubruel P, Leys C, et al. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J Mater Sci Mater Med. 2013;24(2):469–78.CrossRefGoogle Scholar
  41. 41.
    Wang W, Ma N, Kratz K, Xu X, Li Z, Roch T, et al. The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clin Hemorheol Microcirc. 2012;52:357–73.Google Scholar
  42. 42.
    Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS. Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. J Biomed Mater Res. 1988;22:383–404.CrossRefGoogle Scholar
  43. 43.
    Deguchi S, Sato M. Biomechanical properties of actin stress fibers of non-motile cells. Biorheology. 2009;46:93–105.Google Scholar
  44. 44.
    Hirata H, Tatsumi H, Sokabe M. Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim Biophys Acta. 2007;1770:1115–27.CrossRefGoogle Scholar
  45. 45.
    Korn ED, Carlier MF, Pantaloni D. Actin polymerization and ATP hydrolysis. Science. 1987;238:638–44.CrossRefGoogle Scholar
  46. 46.
    Theriot JA. The polymerization motor. Traffic. 2000;1:19–28.CrossRefGoogle Scholar
  47. 47.
    Drakulic D, Krstic A, Stevanovic M. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones. Genet Mol Res. 2012;11:1385–400.CrossRefGoogle Scholar
  48. 48.
    Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22:152–65.CrossRefGoogle Scholar
  49. 49.
    Tsutsui Y, Nogami T, Sano M, Kashiwai A, Kato K. Induction of S-100b (beta beta) protein in human teratocarcinoma cells. Cell Differ. 1987;21:137–45.CrossRefGoogle Scholar
  50. 50.
    Bacakova L, Filova E, Parizek M, Ruml R, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.CrossRefGoogle Scholar
  51. 51.
    Vagaska B, Bacakova L, Filova E, Balik K. Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res. 2010;59:309–22.Google Scholar
  52. 52.
    Saranya N, Saravanan S, Morrthi A, Ramyakrishna B, Selvamurugan N. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2011;7:238–44.CrossRefGoogle Scholar
  53. 53.
    Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26:327–47.CrossRefGoogle Scholar
  54. 54.
    Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, et al. Effects on surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J Biomed Mater Res A. 2011;97:433–40.CrossRefGoogle Scholar
  55. 55.
    Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010;6:2711–20.CrossRefGoogle Scholar
  56. 56.
    Tunma S, Inthanon K, Chaiwong C, Pumchusak J, Wongkam W, Boonyawan D. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma. Cytotechnology. 2012;65(1):119–34.CrossRefGoogle Scholar
  57. 57.
    de Luca AC, Terenghi G, Downes S. Chemical surface modification of poly-e-caprolactone improves Schwann cell proliferation for peripheral nerve repair. J Tissue Eng Regen Med. 2012;. doi: 10.1002/term.1509.Google Scholar
  58. 58.
    Kim SH, Ha HJ, Ko YK, Yoon SJ, Rhee JM, Kim MS, et al. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. J Biomater Sci Polym Ed. 2007;18:609–22.CrossRefGoogle Scholar
  59. 59.
    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRefGoogle Scholar
  60. 60.
    Hodes RJ. Telomere length, aging, and somatic cell turnover. J Exp Med. 1999;190:153–6.CrossRefGoogle Scholar
  61. 61.
    Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992;89:10114–8.CrossRefGoogle Scholar
  62. 62.
    Connolly JA, Kalnins VI, Barber BH. Microtubules and microfilaments during cell spreading and colony formation in PK 15 epithelial cells. Proc Natl Acad Sci USA. 1981;78:6922–6.CrossRefGoogle Scholar
  63. 63.
    Wakatsuki T, Wysolmerski RB, Elson EL. Mechanics of cell spreading: role of myosin II. J Cell Sci. 2003;116:1617–25.CrossRefGoogle Scholar
  64. 64.
    Pelton PD, Sherman LS, Rizvi TA, Marchionni MA, Wood P, Friedman RA, et al. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene. 1998;17:2195–209.CrossRefGoogle Scholar
  65. 65.
    Niles WD, Coassin PJ. Cyclic olefin polymers: innovative materials for high-density multiwell plates. Assay Drug Dev Technol. 2008;6:577–90.CrossRefGoogle Scholar
  66. 66.
    Bhattacharyya A, Klapperich CM. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem. 2006;78:788–92.CrossRefGoogle Scholar
  67. 67.
    Bhurke AS, Askeland PA, Drzal LT. Surface modification of polycarbonate by ultraviolet radiation and ozone. J Adhesion. 2007;83:43–66.CrossRefGoogle Scholar
  68. 68.
    Ho MH, Lee JJ, Fan SC, Wang DM, Hou LT, Hsieh HJ, et al. Efficient modification on PLLA by ozone treatment for biomedical applications. Macromol Biosci. 2007;7:467–74.CrossRefGoogle Scholar
  69. 69.
    Suh H, Hwang YS, Lee JE, Han CD, Park JC. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly l-lactic acid membrane. Biomaterials. 2001;22:219–30.CrossRefGoogle Scholar
  70. 70.
    DiMaio FR. The science of bone cement: a historical review. Orthopedics. 2002;25:1399–407.Google Scholar
  71. 71.
    Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B. 2012;100:1444–50.CrossRefGoogle Scholar
  72. 72.
    Mattotti M, Alvarez Z, Ortega JA, Planell JA, Engel E, Alcantara S. Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials. 2012;33:1759–70.CrossRefGoogle Scholar
  73. 73.
    Eita M, Wagberg L, Muhammed M. Spin-assisted multilayers of poly(methyl methacrylate) and zinc oxide quantum dots for ultraviolet-blocking applications. ACS Appl Mater Interfaces; 2012.Google Scholar
  74. 74.
    Mei Y, Hollister-Lock J, Bogatyrev SR, Cho SW, Weir GC, Langer R, et al. A high throughput micro-array system of polymer surfaces for the manipulation of primary pancreatic islet cells. Biomaterials. 2010;31:8989–95.CrossRefGoogle Scholar
  75. 75.
    Sigurdson L, Carney DE, Hou Y, Hall Lr, Hard R, Hicks WJ, et al. A comparative study of primary and immortalized cell adhesion characteristics to modified polymer surfaces: toward the goal of effective re-epithelialization. J Biomed Mater Res. 2002;59:357–65.CrossRefGoogle Scholar
  76. 76.
    Mant A, Tourniaire G, Diaz-Mochon JJ, Elliott TJ, Williams AP, Bradley M. Polymer microarrays: identification of substrates for phagocytosis assays. Biomaterials. 2006;27:5299–306.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Haubenwallner
    • 1
  • Matthias Katschnig
    • 2
  • Ulrike Fasching
    • 1
  • Silke Patz
    • 1
  • Christa Trattnig
    • 1
  • Natascha Andraschek
    • 1
  • Gerda Grünbacher
    • 1
  • Markus Absenger
    • 3
  • Stephan Laske
    • 2
  • Clemens Holzer
    • 2
  • Werner Balika
    • 4
  • Manuela Wagner
    • 4
  • Ute Schäfer
    • 1
    Email author
  1. 1.Research Unit for Experimental Neurotraumatology, Department of NeurosurgeryMedical University of GrazGrazAustria
  2. 2.Department of Polymer Engineering and ScienceMontanuniversitaet LeobenLeobenAustria
  3. 3.Core Facility Microscopy, Centre of Medical ResearchMedical University of GrazGrazAustria
  4. 4.Sony DADC Austria AG BioSciencesAnifAustria

Personalised recommendations