In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning

  • Fahad N. Almajhdi
  • H. Fouad
  • Khalil Abdelrazek Khalil
  • Hanem M. Awad
  • Sahar H. S. Mohamed
  • T. Elsarnagawy
  • Ahmed M. Albarrag
  • Fawzi F. Al-Jassir
  • Hany S. Abdo
Article

Abstract

In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5–10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint.

Notes

Acknowledgments

The authors gratefully acknowledge funding from NPST at King Saud University Project No. (09-BIO676-02).

References

  1. 1.
    Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8.CrossRefGoogle Scholar
  2. 2.
    Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol–gel coating. Biomaterials. 2008;29:963–9.CrossRefGoogle Scholar
  3. 3.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.CrossRefGoogle Scholar
  4. 4.
    Fortunati E, Mattioli S, Visai L, Imbriani M, Fierro JLG, Kenny JM, Armentano I. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties. Biomacromolecules. 2013;14:626–36.CrossRefGoogle Scholar
  5. 5.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.CrossRefGoogle Scholar
  6. 6.
    Gilchrist T, Healy DM, Drake C. Controlled silver-releasing polymers and their potential for urinary tract infection control. Biomaterials. 1991;12:76–8.CrossRefGoogle Scholar
  7. 7.
    Joyce-Wohrmann RM, Hentschel T, Munstedt HT. Thermoplastic silver-filled polyurethanes for antimicrobial catheters. Adv Eng Mater. 2000;2:380–6.CrossRefGoogle Scholar
  8. 8.
    Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Controlled Release. 2002;81:57–64.CrossRefGoogle Scholar
  9. 9.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403–12.CrossRefGoogle Scholar
  10. 10.
    Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X. Biodegradable electrospun fibers for drug delivery. J Controlled Release. 2003;92:227–31.CrossRefGoogle Scholar
  11. 11.
    Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE. Controlled release of ketoprofen from electrospun poly (vinyl alcohol) nanofibers. Mater Sci Eng A. 2007;459:390–6.CrossRefGoogle Scholar
  12. 12.
    Luong-Van E, Grøndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM. Controlled release of heparin from poly (ε-caprolactone) electrospun fibers. Biomaterials. 2006;27:2042–50.CrossRefGoogle Scholar
  13. 13.
    Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Controlled Release. 2005;108:237–43.CrossRefGoogle Scholar
  14. 14.
    Rujitanaroj PO, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer. 2008;49:4723–32.CrossRefGoogle Scholar
  15. 15.
    Santoveña A, Alvarez-Lorenzo C, Concheiro A, Llabrés M, Fariña JB. Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release. Biomaterials. 2004;25:925–31.CrossRefGoogle Scholar
  16. 16.
    Fouad H, Elsarnagawy T, Almajhdi FN, Khalil KA. Preparation and in vitro thermo-mechanical characterization of electrospun PLGA nanofibers for soft and hard tissue replacement. Int J Electrochem Sci. 2013;8:2293–304.Google Scholar
  17. 17.
    Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN. Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci. 2013;8:3483–93.Google Scholar
  18. 18.
    Hong KH, Woo SH, Kang TJ. In vitro degradation and drug-release behavior of electrospun, fibrous webs of poly (lactic-co-glycolic acid). J Appl Polym Sci. 2012;124:209–14.CrossRefGoogle Scholar
  19. 19.
    Dai W, Kawazoe N, Lin X, Dong J, Chen G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials. 2010;31:2141–52.CrossRefGoogle Scholar
  20. 20.
    Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB. An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials. 2007;28:5137–43.CrossRefGoogle Scholar
  21. 21.
    Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417–22.CrossRefGoogle Scholar
  22. 22.
    Abu-Saied MA, Khalil KA, Al-Deyab SS. Preparation and characterization of poly vinyl acetate nanofiber doping copper metal. Int J Electrochem Sci. 2012;7:2019–27.Google Scholar
  23. 23.
    Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119:203–10.CrossRefGoogle Scholar
  24. 24.
    Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta. 2003;1642:115–23.CrossRefGoogle Scholar
  25. 25.
    Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002;35:8456–66.CrossRefGoogle Scholar
  26. 26.
    Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–92.CrossRefGoogle Scholar
  27. 27.
    Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafme electrospun polyarnide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys. 2004;205:2327–38.CrossRefGoogle Scholar
  28. 28.
    Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polymer J. 2005;41:409–21.CrossRefGoogle Scholar
  29. 29.
    Dai J, Bruening ML. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett. 2002;2:497–501.CrossRefGoogle Scholar
  30. 30.
    Kuo PL, Chen WF. Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly(allylamine) derivatives. J Phys Chem B. 2003;107:11267–72.CrossRefGoogle Scholar
  31. 31.
    Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X. Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci. 2007;103:125–33.CrossRefGoogle Scholar
  32. 32.
    Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Noncytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10:1429–35.CrossRefGoogle Scholar
  33. 33.
    Henglein A. Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem. 1993;97:5457–71.CrossRefGoogle Scholar
  34. 34.
    Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.CrossRefGoogle Scholar
  35. 35.
    Said SS, Aloufy AK, El-Halfawy OM, Boraei NA, El-Khordagui LK. Antimicrobial PLGA ultrafine fibers: Interaction with wound bacteria. Eur J Pharm Biopharm. 2011;79:108–18.CrossRefGoogle Scholar
  36. 36.
    Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R, Lee M, Siu RK, Ngo R, Wang J, Carpenter D, Zhang X, Wu B, Ting K, Soo C. The use of BMP-2 coupled-nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010;35:9293–300.CrossRefGoogle Scholar
  37. 37.
    Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol. 2012;103:273–8.CrossRefGoogle Scholar
  38. 38.
    Liong M, France B, Bradley KA, Zink JI. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater. 2009;21:1684–9.CrossRefGoogle Scholar
  39. 39.
    Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373:572–5.CrossRefGoogle Scholar
  40. 40.
    Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73:1417–23.CrossRefGoogle Scholar
  41. 41.
    Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS, Siu RK, Miller LS, Zhang X, Carpenter D, Wang C, Ting K, Soo C. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (dl-lactic-co-glycolic acid)-coated stainless steel. Biomaterials. 2012;33:8745–56.CrossRefGoogle Scholar
  42. 42.
    Stevanović MM, Škapin SD, Bračko I, Milenković M, Petković J, Filipić M, Uskoković DP. Poly(lactide-co-glycolide)/silver nanoparticles: synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer. 2012;53:2818–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fahad N. Almajhdi
    • 1
  • H. Fouad
    • 2
  • Khalil Abdelrazek Khalil
    • 3
  • Hanem M. Awad
    • 4
  • Sahar H. S. Mohamed
    • 4
  • T. Elsarnagawy
    • 5
  • Ahmed M. Albarrag
    • 6
  • Fawzi F. Al-Jassir
    • 7
  • Hany S. Abdo
    • 3
  1. 1.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Biomedical Engineering Department, Faculty of EngineeringHelwan UniversityHelwanEgypt
  3. 3.Mechanical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  4. 4.National Research CentreCairoEgypt
  5. 5.Faculty of EngineeringPrince Sultan UniversityRiyadhSaudi Arabia
  6. 6.Department of Pathology, College of Medicine and the University HospitalsKing Saud UniversityRiyadhSaudi Arabia
  7. 7.FRCSC, College of MedicineOrthopedic Surgery Research Chair King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations