Advertisement

Cytocompatibility evaluation of different biodegradable magnesium alloys with human mesenchymal stem cells

  • J. Niederlaender
  • M. Walter
  • S. Krajewski
  • E. Schweizer
  • M. Post
  • Ch. Schille
  • J. Geis-Gerstorfer
  • Hans Peter WendelEmail author
Article

Abstract

In the last few years, the use of biodegradable magnesium (Mg) alloys has evoked great interest in the orthopedic field due to great advantages over long-term implant materials associated with various side effects like allergy and sensitization and consequent implant removal surgeries. However, degradation of these Mg alloys results in ion release, which may cause severe cytotoxicity and undesirable complications after implantation. In this study, we investigated the cytological effects of various Mg alloys on cells that play an important role in bone repair. Eight different magnesium alloys containing varying amounts of Al, Zn, Nd and Y were either incubated directly or indirectly with the osteosarcoma cell line Saos-2 or with uninduced and osteogenically-induced human mesenchymal stem cells (MSCs) isolated from bone marrow specimens obtained from the femoral shaft of patients undergoing total hip replacement. Cell viability, cell attachment and the release of ions were investigated at different time points in vitro. During direct or indirect incubation different cytotoxic effects of the Mg alloys on Saos-2 cells and osteogenically-induced or uninduced MSCs were observed. Furthermore, the concentration of degradation products released from the Mg alloys differed. Overall, Mg alloys MgNd2, MgY4, MgAl9Zn1 and MgY4Nd2 exhibit good cytocompatibility. In conclusion, this study reveals the necessity of cytocompatibility evaluation of new biodegradable magnesium alloys with cells that will get in direct contact to the implant material. Furthermore, the use of standardized experimental in vitro assays is necessary in order to reliably and effectively characterize new Mg alloys before performing in vivo experiments.

Keywords

Simulated Body Fluid Human Mesenchymal Stem Cell Inductively Couple Plasma Optical Emission Spectrometry Osteosarcoma Cell Line Plate Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Special thanks to Dr. N. Hort from Helmholtz Zentrum Geesthacht (Germany) for casting the Mg alloys (AiF-project KF0548101PK7) and to Dr. Richard Schaefer from the Institute of Clinical and Experimental Transfusion Medicine, University of Tuebingen (Tuebingen, Germany) for the kind contribution of the human mesenchymal stem cells.

References

  1. 1.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.CrossRefGoogle Scholar
  2. 2.
    Erne P, Schier M, Resink TJ. The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol. 2006;29:11–6.CrossRefGoogle Scholar
  3. 3.
    Dziuba D, Meyer-Lindenberg A, Seitz JM, Waizy H, Angrisani N, Reifenrath J. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater. 2012;9(10):8548–60.CrossRefGoogle Scholar
  4. 4.
    Aldahmash A, Zaher W, Al-Nbaheen M, Kassem M. Human Stromal (Mesenchymal) Stem Cells: basic Biology and Current Clinical Use for Tissue Regeneration. Ann Saudi Med. 2012;32:68–77.Google Scholar
  5. 5.
    Ciapetti G, Granchi D, Baldini N. The Combined Use of Mesenchymal Stromal Cells and Scaffolds for Bone Repair. Curr Pharm Des. 2012;18:1796–820.CrossRefGoogle Scholar
  6. 6.
    Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007;81:757–65.CrossRefGoogle Scholar
  7. 7.
    Gu XN, Li N, Zheng YF, Ruan L. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Mater Sci Eng, B. 2011;176:1778–84.CrossRefGoogle Scholar
  8. 8.
    Fischer J, Pröfrock D, Hort N, Willumeit R, Feyerabend F. Improved cytotoxicity testing of magnesium materials. Mater Sci Eng, B. 2011;176:830–4.CrossRefGoogle Scholar
  9. 9.
    Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23:220–9.CrossRefGoogle Scholar
  10. 10.
    Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010;6:1834–42.CrossRefGoogle Scholar
  11. 11.
    Liu H. The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion. J Biomed Mater Res A. 2011;99:249–60.CrossRefGoogle Scholar
  12. 12.
    Geis-Gerstorfer J, Schille C, Schweizer E, Rupp F, Scheideler L, et al. Blood triggered corrosion of magnesium alloys. Mater Sci Eng, B. 2011;176:1761–6.CrossRefGoogle Scholar
  13. 13.
    Schille C, Braun M, Wendel HP, Scheideler L, Hort N, et al. Corrosion of experimental magnesium alloys in blood and PBS: a gravimetric and microscopic evaluation. Mater Sci Eng, B. 2011;176:1797–801.CrossRefGoogle Scholar
  14. 14.
    Niederlaender J, Rudi P, Schweizer E, Post P, Schille C, et al. Cytocompatibility of magnesium alloys with adult human endothelial cells. Emerg Mater Res. 2013;2:274–82.CrossRefGoogle Scholar
  15. 15.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.CrossRefGoogle Scholar
  16. 16.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.CrossRefGoogle Scholar
  17. 17.
    Ardjomandi N, Klein C, Kohler K, Maurer A, Kalbacher H, et al. Indirect coating of RGD peptides using a poly-l-lysine spacer enhances jaw periosteal cell adhesion, proliferation, and differentiation into osteogenic tissue. J Biomed Mater Res A. 2012;100A:2034–44.CrossRefGoogle Scholar
  18. 18.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefGoogle Scholar
  19. 19.
    Nolte A, Walker T, Schneider M, Kray O, Avci-Adali M, et al. Small-interfering RNA-eluting surfaces as a novel concept for intravascular local gene silencing. Mol Med. 2011;17:1213–22.CrossRefGoogle Scholar
  20. 20.
    Fischer J, Prosenc MH, Wolff M, Hort N, Willumeit R, et al. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater. 2010;6:1813–23.CrossRefGoogle Scholar
  21. 21.
    Goswami M, Yadav K, Dubey A, Sharma BS, Konwar R, et al. In vitro cytotoxicity assessment of two heavy metal salts in a fish cell line (RF). Drug Chem Toxicol. 2014;37:48–54.CrossRefGoogle Scholar
  22. 22.
    Schaffer JE, Nauman EA, Stanciu LA. Cold drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of in vitro vascular cytocompatibility. Acta Biomater. 2013;9:8574–84.CrossRefGoogle Scholar
  23. 23.
    Cipriano AF, Zhao T, Johnson I, Guan RG, Garcia S, Liu H. In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells. J Mater Sci Mater Med. 2013;24(4):989–1003.CrossRefGoogle Scholar
  24. 24.
    Johnson I, Perchy D, Liu H. In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J Biomed Mater Res A. 2012;100A:477–85.CrossRefGoogle Scholar
  25. 25.
    Doepke A, Kuhlmann J, Guo X, Voorhees R, Heineman W. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomater. 2013;9(11):9211–9.CrossRefGoogle Scholar
  26. 26.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Niederlaender
    • 1
  • M. Walter
    • 2
  • S. Krajewski
    • 1
  • E. Schweizer
    • 2
  • M. Post
    • 1
  • Ch. Schille
    • 2
  • J. Geis-Gerstorfer
    • 2
  • Hans Peter Wendel
    • 1
    Email author
  1. 1.Clinical Research Laboratory, Department of Thoracic, Cardiac and Vascular Surgery, University Hospital TuebingenTuebingen UniversityTuebingenGermany
  2. 2.Dental Clinic, Section Medical Materials & TechnologyUniversity Hospital TuebingenTuebingenGermany

Personalised recommendations