Skip to main content

Advertisement

Log in

Mechanical properties of morcellised bone graft with the addition of hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Mixtures of morcellised bone graft (MBG) and hydroxyapatite (HA) are frequently used in revision arthroplasty surgery. However, the changes in the mechanical properties from adding HA to MBG are unknown. This study used a uniaxial compression test to replicate impaction bone grafting and subsequent early postoperative weightbearing to investigate the effect of adding different proportion of HA to MBG. To achieve this aim, human MBG was subjected to increasing impaction forces and the apparent stiffness and creep for each stress level determined. Subsequently, increasing proportions porous and non porous HA were added to the MBG. The major findings were that the apparent stiffness for MBG increased and the associated creep decreased both with the application of increasing stress and with the addition of increasing proportions of HA. In conclusion, greater proportions of HA in the graft mixture improved the mechanical response compared with MBG impacted under the same force. This improvement replicated the properties of pure MBG under high axial stress. This study indicates that graft mixtures of MBG and HA can be tailormade for patients. The need for less impaction force in MBG:HA mixtures to obtain the same properties as pure MBG may decrease the risk of intraoperative fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Phillips AT, Pankaj, Brown DT, Oram TZ, Howie CR, Usmani AS. The elastic properties of morsellised cortico-cancellous bone graft are dependent on its prior loading. J Biomech. 2006;39(8):1517–26.

    Article  Google Scholar 

  2. Ireland L, Spelman D. Bacterial contamination of tissue allografts—experiences of the donor tissue bank of Victoria. Cell Tissue Bank. 2005;6(3):181–9. doi:10.1007/s10561-005-7365-5.

    Article  Google Scholar 

  3. Simonds RJ, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992;326(11):726–32.

    Article  Google Scholar 

  4. Schreurs BW, Slooff TJ, Buma P, Gardeniers JW, Huiskes R. Acetabular reconstruction with impacted morsellised cancellous bone graft and cement. A 10- to 15-year follow-up of 60 revision arthroplasties. J Bone Joint Surg Br. 1998;80(3):391–5.

    Article  Google Scholar 

  5. Schreurs BW, Zengerink M, Welten ML, van Kampen A, Slooff TJ. Bone impaction grafting and a cemented cup after acetabular fracture at 3–18 years. Clin Orthop Relat Res. 2005;437:145–51.

    Article  Google Scholar 

  6. Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17(3):346–53. doi:10.1002/jor.1100170308.

    Article  Google Scholar 

  7. Voor MJ, Nawab A, Malkani AL, Ullrich CR. Mechanical properties of compacted morselized cancellous bone graft using one-dimensional consolidation testing. J Biomech. 2000;33(12):1683–8.

    Article  Google Scholar 

  8. Blom AW, Cunningham JL, Hughes G, Lawes TJ, Smith N, Blunn G, et al. The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur. J Bone Joint Surg Br. 2005;87(3):421–5.

    Article  Google Scholar 

  9. Bolder SB, Verdonschot N, Schreurs BW. Technical factors affecting cup stability in bone impaction grafting. Proc Inst Mech Eng [H]. 2007;221(1):81–6.

    Article  Google Scholar 

  10. Grimm B, Miles AW, Turner IG. Optimizing a hydroxyapatite/tricalcium–phosphate ceramic as a bone graft extender for impaction grafting. J Mater Sci Mater Med. 2001;12(10–12):929–34. doi:381147.

    Article  Google Scholar 

  11. Arts JJ, Gardeniers JW, Welten ML, Verdonschot N, Schreurs BW, Buma P. No negative effects of bone impaction grafting with bone and ceramic mixtures. Clin Orthop Relat Res. 2005;438:239–47.

    Article  Google Scholar 

  12. Voor MJ, White JE, Grieshaber JE, Malkani AL, Ullrich CR. Impacted morselized cancellous bone: mechanical effects of defatting and augmentation with fine hydroxyapatite particles. J Biomech. 2004;37(8):1233–9. doi:10.1016/j.jbiomech.2003.12.002.

    Article  Google Scholar 

  13. Schreurs BW, Gardeniers JW, Slooff TJ. Acetabular reconstruction with bone impaction grafting: 20 years of experience. Instr Course Lect. 2001;50:221–8.

    Google Scholar 

  14. Aoki H, Akao MaKK. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci. 1981;16:809–12.

    Article  Google Scholar 

  15. LeGeros. RZLaJP. Dense hydroxyapatite. In: An introduction to bioceramics. 1993.

  16. White AA, Kinloch IA, Windle AH, Best SM. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites. J R Soc Interface. 2010;7(Suppl 5):S529–39. doi:10.1098/rsif.2010.0117.focus.

    Article  Google Scholar 

  17. Tolouei RRS, Tan C, Amiriyan M, Teng W. Sintering effects on the densification of nanocrystalline hydroxyapatite. Int J Automot Mech Eng (IJAME). 2011;3:249–55.

    Google Scholar 

  18. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.

    Google Scholar 

  19. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med. 2005;16(5):467–75. doi:10.1007/s10856-005-6988-1.

    Article  Google Scholar 

  20. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A. 2004;68(1):187–200. doi:10.1002/jbm.a.10050.

    Article  Google Scholar 

  21. Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007;7(4):475–90. doi:10.1016/j.spinee.2006.07.017.

    Article  Google Scholar 

  22. Sorensen J, Ullmark G, Langstrom B, Nilsson O. Rapid bone and blood flow formation in impacted morselized allografts: positron emission tomography (PET) studies on allografts in 5 femoral component revisions of total hip arthroplasty. Acta Orthop Scand. 2003;74(6):633–43. doi:10.1080/00016470310018126.

    Article  Google Scholar 

  23. Ullmark G, Nilsson O. Impacted corticocancellous allografts: recoil and strength. J Arthroplast. 1999;14(8):1019–23.

    Article  Google Scholar 

  24. Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech. 1995;28(6):715–24.

    Article  Google Scholar 

  25. Gie GA, Linder L, Ling RS, Simon JP, Slooff TJ, Timperley AJ. Contained morselized allograft in revision total hip arthroplasty. Surgical technique. Orthop Clin North Am. 1993;24(4):717–25.

    Google Scholar 

  26. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.

    Article  Google Scholar 

  27. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26(8):969–90. doi:0021-9290(93)90058-M.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. McNamara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, I., Howard, J., Rayment, A. et al. Mechanical properties of morcellised bone graft with the addition of hydroxyapatite. J Mater Sci: Mater Med 25, 321–327 (2014). https://doi.org/10.1007/s10856-013-5085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5085-0

Keywords

Navigation