Skip to main content

Advertisement

Log in

Application of carbon nanotubes layered on silicon wafer for the detection of breast cancer marker carbohydrate antigen 15-3 by immuno-polymerase chain reaction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A highly sensitive detection of breast cancer marker, carbohydrate antigen 15-3 (CA 15-3) by carbon nanotube (CNT) based immuno-polymerase chain reaction was reported. The study was aimed to develop a precise and sensitive method to diagnose breast cancer and its recurrence. The hydrofluoric acid (HF) treated silicon wafer layered with bundled CNT was used as the substrate. The surface was treated with HNO3/H2SO4 to graft carboxyl groups on the tips of CNT. Subsequently, polyoxyethylene bis-amine was grafted to conjugate anti human CA 15-3 antibodies. Water contact angle measurement, scanning electron microscope, Fourier transform infrared spectrometer, Raman spectrometer and sodium dodecyl sulfate polyacrylamide gel electrophoresis were employed to confirm the surface modification. The captured antibodies on the CNT were used to capture the target antigen CA 15-3 and the biotinylated secondary antibodies were subsequently bound with the target antigen. A bi-functional streptavidin was used to link biotinylated DNA to the biotinylated detection antibodies. The biotinylated target DNA was amplified by PCR, and then analyzed by agarose gel electrophoresis. The lower limit of detection of CA 15-3 by the proposed immuno-PCR system was 0.001 U/mL, which is extremely sensitive than the other bioanalytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nima ZA, Mahmood MW, Karmakar A, Mustafa T, Bourdo S, Xu Y, Biris AS. Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J Biomed Opt. 2013;18:55003.

    Article  Google Scholar 

  2. Johnsén C, Bjurstam N. Diagnostic methods in breast cancer. World J Surg. 1977;1:290–4.

    Article  Google Scholar 

  3. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci USA. 2005;102:12371–6.

    Article  Google Scholar 

  4. Bedognetti D, Balwit JM, Wang E, Disis ML, Britten CM, Delogu LG, Tomei S, Fox BA, Gajewski TF, Marincola FM, Butterfield LH. SITC/iSBTc cancer immunotherapy biomarkers resource document: online resources and useful tools—a compass in the land of biomarker discovery. J Transl Med. 2011;9:155.

    Article  Google Scholar 

  5. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571–9.

    Article  Google Scholar 

  6. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nature Rev Cancer. 2005;5:845–56.

    Article  Google Scholar 

  7. Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin Chem. 2006;52:345–51.

    Article  Google Scholar 

  8. Bon GG, Kenemans P, Verstraeten R, van Kamp GJ, Hilgers J. Serum tumor marker immunoassays in gynecologic oncology: establishment of reference values. Am J Obstet Gynecol. 1996;174:107–14.

    Article  Google Scholar 

  9. Hayes DF, Zurawski VR Jr, Kufe DW. Comparison of circulating CA 15-3 and carcinoembryonic antigen levels in patients with breast cancer. J Clin Oncol. 1986;4:1542–50.

    Google Scholar 

  10. Pons-Anicet DMF, Krebs BP, Namer M. Value of CA 15-3 in the follow-up of breast cancer patients. Br J Cancer. 1987;55:567–9.

    Article  Google Scholar 

  11. Sano T, Smith CL, Cantor CR. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science. 1992;258:120–2.

    Article  Google Scholar 

  12. Adler M, Langer M, Witthohn K, Eck J, Blohm D, Niemeyer CM. Detection of rViscumin in plasma samples by immuno-PCR. Biochem Biophys Res Commun. 2003;300:757–63.

    Article  Google Scholar 

  13. Niemeyer CM, Adler M, Wacker R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005;23:208–16.

    Article  Google Scholar 

  14. Joerger RD, Truby TM, Hendrickson ER, Young RM, Ebersole RC. Analyte detection with DNA-labeled antibodies and polymerase chain reaction. Clin Chem. 1995;41:1371–7.

    Google Scholar 

  15. Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, Yajima T, Kameshima H, Watanabe N. Detection of human serum tumor necrosis factor-alpha in healthy donors, using a highly sensitive immuno-PCR assay. Clin Chem. 1999;45:665–9.

    Google Scholar 

  16. Wang TW, Lu HY, Lou PJ, Lin FH. Application of highly sensitive, modified glass substrate based immuno-PCR on the early detection of nasopharyngeal carcinoma. Biomaterials. 2008;29:4447–54.

    Article  Google Scholar 

  17. Brakmane G, Madani SY, Seifalian A. Cancer antibody enhanced real time imaging cell probes—a novel theranostic tool using polymer linked carbon nanotubes and quantum dots. Anticancer Agents Med Chem. 2013;13:821–32.

    Article  Google Scholar 

  18. Madani SY, Shabani F, Dwek MV, Seifalian AM. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int J Nanomedicine. 2013;8:941–50.

    Google Scholar 

  19. Shi X, Wang SH, Shen M, Antwerp ME, Chen X, Li C, Petersen EJ, Huang Q, Weber WJ Jr, Baker JR Jr. Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules. 2009;10:1744–50.

    Article  Google Scholar 

  20. Huang SM, Woodson M, Smalley R, Liu J. Growth mechanism of oriented long single walled carbon nanotubes using fast-heating chemical vapor deposition process. Nano Lett. 2004;4:1025–8.

    Article  Google Scholar 

  21. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674–9.

    Article  Google Scholar 

  22. De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557–62.

    Article  Google Scholar 

  23. Delogu LG, Vidili G, Venturelli E, Ménard-Moyon C, Zoroddu MA, Pilo G, Nicolussi P, Ligios C, Bedognetti D, Sgarrella F, Manetti R, Bianco A. Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci USA. 2012;109:16612–7.

    Article  Google Scholar 

  24. Yi H, Ghosh D, Ham MH, Qi J, Barone PW, Strano MS, Belcher AM. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012;12:1176–83.

    Article  Google Scholar 

  25. Delogu LG, Stanford SM, Santelli E, Magrini A, Bergamaschi A, Motamedchaboki K, Rosato N, Mustelin T, Bottini N, Bottini M. Carbon nanotube-based nanocarriers: the importance of keeping it clean. J Nanosci Nanotechnol. 2010;10:5293–301.

    Article  Google Scholar 

  26. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl. 2002;41:1853–9.

    Article  Google Scholar 

  27. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R Jr, Olson J, Guthold M, Gmeiner WH. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano. 2009;3:2667–73.

    Article  Google Scholar 

  28. Lay CL, Liu HQ, Tan HR, Liu Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes forpotent cancer therapeutics. Nanotechnology. 2010;21:065101.

    Article  Google Scholar 

  29. Nakayama-Ratchford N, Bangsaruntip S, Sun X, Welsher K, Dai H. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecularconjugates with pH-dependent absorbance and fluorescence. J Am Chem Soc. 2007;129:2448–9.

    Article  Google Scholar 

  30. Delogu LG, Venturelli E, Manetti R, Pinna GA, Carru C, Madeddu R, Murgia L, Sgarrella F, Dumortier H, Bianco A. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine (Lond). 2012;7:231–43.

    Article  Google Scholar 

  31. Pescatori M, Bedognetti D, Venturelli E, Ménard-Moyon C, Bernardini C, Muresu E, Piana A, Maida G, Manetti R, Sgarrella F, Bianco A, Delogu LG. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials. 2013;34:4395–403.

    Article  Google Scholar 

  32. Delogu LG, Magrini A, Bergamaschi A, Rosato N, Dawson MI, Bottini N, Bottini M. Conjugation of antisense oligonucleotides to PEGylated carbon nanotubes enables efficient knockdown of PTPN22 in T lymphocytes. Bioconjugate Chem. 2009;20:427–31.

    Article  Google Scholar 

  33. Zhao B, Yan J, Wang D, Ge Z, He S, He D, Song S, Fan C. Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. Small. 2013;. doi:10.1002/smll.201202957.

    Google Scholar 

  34. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  Google Scholar 

  35. Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO. Protein microarray technology. Trends Biotechnol. 2002;20:160–6.

    Article  Google Scholar 

  36. Bange A, Halsall HB, Heineman WR. Microfluidic immunosensor systems. Biosens Bioelectron. 2005;20:2488–503.

    Article  Google Scholar 

  37. Zhang H, Zhao Q, Li XF, Le XC. Ultrasensitive assays for proteins. Analyst. 2007;132:724–37.

    Article  Google Scholar 

  38. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32:698–725.

    Article  Google Scholar 

  39. Huang TS, Tzeng Y, Liu YK, Chen YC, Walker KR, Guntupalli R, Liu C. Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam Relat Mater. 2004;13:1098–102.

    Article  Google Scholar 

  40. Choi YC, Shin YM, Lee YH, Lee BS, Park GS, Choi WB, Lee NS, Kim JM. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett. 2000;76:2367.

    Article  Google Scholar 

  41. Van Hooijdonk E, Bittencourt C, Snyders R, Colomer JF. Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol. 2013;4:129–52.

    Article  Google Scholar 

  42. Mirershadi S, Mortazavi SZ, Reyhani A, Moniri N, Novinrooz AJ. Effective condition for purification of multi-walled carbon nanotubes by nitric acid. Synth React Inorg Met Org Nano Met Chem. 2009;39:204–8.

    Google Scholar 

  43. Mazinani S, Ajji A, Dubois C. Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer. 2009;50:329–42.

    Article  Google Scholar 

  44. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem. 2010;82:6401–8.

    Article  Google Scholar 

  45. Shim M, Kam NWS, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002;2:285–8.

    Article  Google Scholar 

  46. Chang CC, Chiu NF, Lin DS, Chu-Su Y, Liang YH, Lin CW. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem. 2010;82:1207–12.

    Article  Google Scholar 

  47. Zhang HG, Qi C, Wang ZH, Jin G, Xiu RJ. Evaluation of a new CA15-3 protein assay method: optical protein-chip system for clinical application. Clin Chem. 2005;51:1038–40.

    Article  Google Scholar 

  48. Zhang X, Peng X, Jin W. Scanning electrochemical microscopy with enzyme immunoassay of the cancer-related antigen CA15-3. Anal Chim Acta. 2006;558:110–4.

    Article  Google Scholar 

  49. Hong C, Yuan R, Chai Y, Zhuo Y. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Anal Chim Acta. 2009;633:244–9.

    Article  Google Scholar 

  50. Liu YM, Zheng YL, Cao JT, Chen YH, Li FR. Sensitive detection of tumor marker CA15-3 in human serum by capillary electrophoretic immunoassay with chemiluminescence detection. J Sep Sci. 2008;31:1151–5.

    Article  Google Scholar 

  51. He Z, Gao N, Jin W. Capillary electrophoretic enzyme immunoassay with electrochemical detection using a noncompetitive format. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;784:343–50.

    Article  Google Scholar 

  52. Chourb S, Mackness BC, Farris LR, McDonald MJ. Improved detection Of the MUC1 cancer antigen CA 15-3 by ALYGNSA fluorimmunoassay. Health. 2011;3:524–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Huei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadhasivam, S., Chen, JC., Savitha, S. et al. Application of carbon nanotubes layered on silicon wafer for the detection of breast cancer marker carbohydrate antigen 15-3 by immuno-polymerase chain reaction. J Mater Sci: Mater Med 25, 101–111 (2014). https://doi.org/10.1007/s10856-013-5060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5060-9

Keywords

Navigation