Skip to main content

Advertisement

Log in

Monetite and brushite coated magnesium: in vivo and in vitro models for degradation analysis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The use of magnesium (Mg) as a biodegradable metallic replacement of permanent orthopaedic materials is a current topic of interest and investigation. The appropriate biocompatibility, elastic modulus and mechanical properties of Mg recommend its suitability for bone fracture fixation. However, the degradation rates of Mg can be rapid and unpredictable resulting in mass hydrogen production and potential loss of mechanical integrity. Thus the application of calcium phosphate coatings has been considered as a means of improving the degradation properties of Mg. Brushite and monetite are utilized and their degradation properties (alongside uncoated Mg controls) are assessed in an in vivo subcutaneous environment and the findings compared to their in vitro degradation behaviour in immersion tests. The current findings suggest monetite coatings have significant degradation protective effects compared to brushite coatings in vivo. Furthermore, it is postulated that an in vitro immersion test may be used as a tentative predictor of in vivo subcutaneous degradation behavior of calcium phosphate coated and uncoated Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Williams D. New interests in magnesium. Med Device Technol. 2006;17(3):9.

    Google Scholar 

  2. Brar HS, et al. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM. 2009;61(9):31–4.

    Article  Google Scholar 

  3. Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2011;8(1):20–30.

    Google Scholar 

  4. Salahshoor M, Guo Y. Surface integrity of biodegradable Magnesium-Calcium orthopedic implant by burnishing. J Mech Behav Biomed Mater. 2011;4(8):1888–904.

    Google Scholar 

  5. Hornberger H, Virtanen S, Boccaccini A. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8(7):2442–55.

    Google Scholar 

  6. Manuel MV, Hort N. Magnesium: an essential nutrient for a good biomaterial. JOM. 2011;63(4):99.

    Article  Google Scholar 

  7. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.

    Article  Google Scholar 

  8. Malekani J et al. Biomaterials in orthopedic bone plates: a review. Glob Sci Technol Forum. 2011.

  9. Persaud-Sharma D, McGoron A. Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng. 2012;12:25–39.

    Article  Google Scholar 

  10. Wang J et al. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res Part B Appl Biomater. 2012;100B(6):1691–701.

    Google Scholar 

  11. Chai H et al. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy. J Biomed Mater Res Part A 2011;100A(2):293–304.

    Google Scholar 

  12. Yang J et al. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model. J Biomater Appl. 2011;27(2):153–64.

    Google Scholar 

  13. Zhao S et al. Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration. Clin Oral Implants Res. 2011;24(A100):34–41.

    Google Scholar 

  14. Wagner DW, Lindsey DP, Beaupre GS. Deriving tissue density and elastic modulus from microCT bone scans. Bone 2011;49(5):931–38.

    Google Scholar 

  15. Zhou YL, et al. Compressive properties of hot-rolled Mg–Zr–Ca alloys for biomedical applications. Adv Mater Res. 2011;197:56–9.

    Article  Google Scholar 

  16. Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1(1):11–33.

    Article  Google Scholar 

  17. Gray Munro J, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res Part A. 2009;91(1):221–30.

    Article  Google Scholar 

  18. Witte F, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  Google Scholar 

  19. Staiger M, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  Google Scholar 

  20. Kannan MB, Orr L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomed Mater. 2011;6:045003.

    Article  Google Scholar 

  21. Witte F, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12(5–6):63–72.

    Article  Google Scholar 

  22. Xin Y, et al. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J Mater Res. 2007;22(7):2004–11.

    Article  Google Scholar 

  23. Groves EWH. An experimental study of the operative treatment of fractures. Br J Surg. 1913;1(3):438–501.

    Article  Google Scholar 

  24. Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci Chin. 2010;4(2):111–5.

    Article  Google Scholar 

  25. Choi J, et al. Calcium phosphate coating of nickel-titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24(21):3689–96.

    Article  Google Scholar 

  26. Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials. 1991;12(8):767–74.

    Article  Google Scholar 

  27. Qu J, et al. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res B Appl Biomater. 2011;97(1):40–8.

    Article  Google Scholar 

  28. Roy A et al. Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy. Mater Sci Eng B 2011;176(20):1679–89.

    Google Scholar 

  29. Sureshbabu S, et al. Biomimetic deposition of hydroxyapatite on titanium with help of sol-gel grown calcium pyrophosphate prelayer. Mater Res Innov. 2011;15(3):178–84.

    Article  Google Scholar 

  30. Chai YC et al. Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering. Acta Biomater. 2011;7(5):2310–19.

    Google Scholar 

  31. Drevet R, et al. In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate. J Mater Sci Mater Med. 2011;22(4):753–61.

    Article  Google Scholar 

  32. Lin DY, Wang XX. Preparation of hydroxyapatite coating on smooth implant surface by electrodeposition. Ceram Int. 2011;37(1):403–6.

    Article  Google Scholar 

  33. Elkoca O, et al. Hydroxyapatite coating on Cp–Ti implants by biomimetic method. Adv Mater Res. 2012;445:679–84.

    Article  Google Scholar 

  34. Dressler M et al. Sol–gel preparation of calcium titanium phosphate: viscosity, thermal properties and solubility. J Sol–Gel Sci Technol 2012:1–8.

  35. Karakas A, et al. Yttria-doped zirconia-hydroxyapatite composite coating on Cp–Ti implants by biomimetic method. Adv Mater Res. 2012;445:691–6.

    Article  Google Scholar 

  36. Robotti P, Zappini G. Thermal plasma spray deposition of titanium and hydroxyapatite on polyaryletheretherketone implants. PEEK Biomater Handb 2011:119.

  37. Singh G, Singh S, Prakash S. Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf Coat Technol. 2011;205(20):4814–20.

    Google Scholar 

  38. Demnati I et al. Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surf Coat Technol. 2011;206(8–9):2346–53.

    Google Scholar 

  39. Yang F et al. Osteoblast response to puerarin-loaded porous titanium surfaces: an in vitro study. J Biomed Mater Res Part A. 2012;100A(6):1419–26

    Google Scholar 

  40. Alghamdi HS et al. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin Oral Implants Res. 2012;24(5):475–83.

    Google Scholar 

  41. Palarie V et al. Early outcome of an implant system with a resorbable adhesive calcium–phosphate coating—a prospective clinical study in partially dentate patients. Clin Oral Invest 2011:1–10.

  42. Fontana F, et al. Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implant Res. 2011;22(7):760–6.

    Article  Google Scholar 

  43. Jo JH et al. Hydroxyapatite coating on magnesium with MgF 2 interlayer for enhanced corrosion resistance and biocompatibility. J Mater Sci Mater Med. 2011:1–11.

  44. Waterman J, et al. Improving in vitro corrosion resistance of biomimetic calcium phosphate coatings for Mg substrates using calcium hydroxide layer. Corros Eng Sci Technol. 2012;47(5):340–5.

    Article  Google Scholar 

  45. Tomozawa M, Hiromoto S. Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Appl Surf Sci. 2011;257(19):8253-7.

    Google Scholar 

  46. Choudhary L, Raman RKS, Nie J. In vitro evaluation of degradation of a calcium phosphate coating on a Mg–Zn–Ca alloy in a physiological environment. Corrosion. 2012;68(6):499–506.

    Article  Google Scholar 

  47. Shadanbaz S et al. Growth of calcium phosphates on magnesium substrates for corrosion control in biomedical applications via immersion techniques. J Biomed Mater Res Part B Appl Biomater. 2012;101B(1):162–72.

    Google Scholar 

  48. Kumar M, Dasarathy H, Riley C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J Biomed Mater Res Part A. 1999;45(4):302–10.

    Article  Google Scholar 

  49. Redepenning J, et al. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. J Biomed Mater Res Part A. 1996;30(3):287–94.

    Article  Google Scholar 

  50. Xie J, Riley C, Chittur K. Effect of albumin on brushite transformation to hydroxyapatite. J Biomed Mater Res. 2001;57(3):357–65.

    Article  Google Scholar 

  51. Dorozhkin S, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41(17):3130–46.

    Article  Google Scholar 

  52. Kumar M, et al. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials. 1999;20(15):1389–99.

    Article  Google Scholar 

  53. LeGeros R, et al. Significance of the porosity and physical chemistry of calcium phosphate ceramics biodegradation bioresorption. Ann N Y Acad Sci. 1988;523(1):268–71.

    Article  Google Scholar 

  54. Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomater. 2011;8(2):474–87

    Google Scholar 

  55. da Silva MP, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf Coat Technol. 2001;137(2):270–6.

    Article  Google Scholar 

  56. Großardt C, et al. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng Part A. 2010;16(12):3687–95.

    Article  Google Scholar 

  57. Tamimi F, et al. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite versus monetite. Acta Biomater. 2012;8(8):3161–9.

    Article  Google Scholar 

  58. Gbureck U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater. 2007;17(18):3940–5.

    Article  Google Scholar 

  59. Lobovkina T, et al. Protrusive growth and periodic contractile motion in surface-adhered vesicles induced by Ca2+-gradients. Soft Matter. 2010;6(2):268–72.

    Article  Google Scholar 

  60. Breitwieser GE. Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol. 2008;40(8):1467–80.

    Article  Google Scholar 

  61. Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2005;97(1):56–70.

    Article  Google Scholar 

  62. Godwin SL, Soltoff SP. Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J Biol Chem. 1997;272(17):11307–12.

    Article  Google Scholar 

  63. Titorencu I, et al. Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal cells. Cytotherapy. 2007;9(7):682–96.

    Article  Google Scholar 

  64. Aguirre A, et al. Extracellular calcium modulates In vitro bone marrow-derived Flk-1 + CD34 + progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem Biophys Res Commun. 2010;393(1):156–61.

    Article  Google Scholar 

  65. Dvorak MM, et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004;101(14):5140–5.

    Article  Google Scholar 

  66. Dvorak MM, et al. Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology. 2007;148(7):3156–63.

    Article  Google Scholar 

  67. Julien M, et al. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res. 2009;24(11):1856–68.

    Article  Google Scholar 

  68. Auer J, et al. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord. 2007;8(1):72.

    Article  Google Scholar 

  69. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C. 2009;29(5):1559–68.

    Article  Google Scholar 

  70. G31-72 A. Standard practice for laboratory immersion corrosion testing of metals, in materials ASfTa2004. Pennsylvania, USA.

  71. Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg. 1999;57(9):1122–6.

    Article  Google Scholar 

  72. Fernańdez E et al. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci Mater Med. 1999;10(3):169–76.

    Google Scholar 

  73. Knabe C, et al. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res. 2000;52(3):498–508.

    Article  Google Scholar 

  74. Gray-Munro J, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res Part A. 2009;90(2):339–50.

    Article  Google Scholar 

  75. Wang Y, Wei M, Gao J. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mater Sci Eng C. 2009;29(4):1311–6.

    Article  Google Scholar 

  76. Chun-Yan Z, et al. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf Coat Technol. 2010;204(21):3636–40.

    Article  Google Scholar 

  77. Zhang CY, et al. Preparation of calcium phosphate coatings on Mg-1.0 Ca alloy. Trans Nonferr Met Soc China. 2010;20:s655–9.

    Article  Google Scholar 

  78. Li K et al. Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment. J Biomater Appl. 2012;28(3):375–84.

    Google Scholar 

  79. Chun-Yan Z, et al. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf Coat Technol. 2010;204(21–22):3636–40.

    Article  Google Scholar 

  80. Xu L, Zhang E, Yang K. Phosphating treatment and corrosion properties of Mg–Mn–Zn alloy for biomedical application. J Mater Sci Mater Med. 2009;20(4):859–67.

    Article  Google Scholar 

  81. Srinivasan PB, et al. Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Appl Surf Sci. 2010;256(12):4017–22.

    Article  Google Scholar 

  82. Walker J et al. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res Part B. 2012;100B(4):1134–41

    Google Scholar 

  83. Xin Y, Hu T, Chu PK. Influence of test solutions on in vitro studies of biomedical magnesium alloys. J Electrochem Soc. 2010;157(7):C238–43.

    Article  Google Scholar 

  84. Witte F, et al. Biodegradable magnesium hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–74.

    Article  Google Scholar 

  85. Willumeit R, et al. Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomater. 2011;7(6):2704–15.

    Article  Google Scholar 

  86. Kirkland N, Birbilis N, Staiger M. Assessing the corrosion of biodegradable magnesium implants—a critical review of current methodologies and their limitations. Acta Biomater. 2011;8(3):925–36.

    Google Scholar 

  87. Xin Y, Hu T, Chu P. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater. 2011;7(4):1452–9.

    Article  Google Scholar 

  88. Yang L, et al. Effects of corrosion environment and proteins on magnesium corrosion. Corros Eng Sci Technol. 2012;47(5):335–9.

    Article  Google Scholar 

  89. Chen XB, et al. In vitro corrosion survey of Mg-xCa and Mg-3Zn-yCa alloys with and without calcium phosphate conversion coatings. Corros Eng Sci Technol. 2012;47(5):365–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaylin Shadanbaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadanbaz, S., Walker, J., Woodfield, T.B.F. et al. Monetite and brushite coated magnesium: in vivo and in vitro models for degradation analysis. J Mater Sci: Mater Med 25, 173–183 (2014). https://doi.org/10.1007/s10856-013-5059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5059-2

Keywords

Navigation