Skip to main content
Log in

N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH2 ion implantation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Graphene is functionalized with amine by NH2 ion implantation at room temperature in vacuum. The reaction is featured by nucleophilic substitution of C–O groups by the ammonia radicals. The presence of N-containing functional groups in graphene is identified by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. N element was successfully introduced to graphene, the atomic ratio of N to C rose to 3.12 %. NH2 ion implanted graphene (G-NH2) is a better hydrophilic material than pristine grahene according to the contact angle experiment. Mouse fibroblast cells and human endothelial cells cultured on G-NH2 displayed superior cell-viability, proliferation and stretching over that on pristine graphene. Platelet adhesion, hemolysis and Kinetic-clotting time were measured on G-NH2, showing excellent anticoagulation, with as good hemolysis as pristine graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77:347–57.

    Article  CAS  Google Scholar 

  2. Pan B, Cui D, Ozkan CS, Ozkan M, Xu P, Huang T, Liu F, Chen H, Li Q, He R, Gao F. Effects of carbon nanotubes on photoluminescence properties of quantum dots. J Phys Chem C. 2008;112:939–44.

    Article  CAS  Google Scholar 

  3. Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155:73–85.

    Article  CAS  Google Scholar 

  4. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.

    Article  CAS  Google Scholar 

  5. Wang Z, Ruan J, Cui D. Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett. 2009;4:593–605.

    Article  CAS  Google Scholar 

  6. Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide based glucose biosensors. Langmuir. 2010;26:6158–60.

    Article  CAS  Google Scholar 

  7. Peng C, Hu W, Zhou Y, Fan C, Huang Q. Intracellular imaging with a graphene based fluorescent probe. Small. 2010;6:1686–92.

    Article  CAS  Google Scholar 

  8. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res Lett. 2008;1:203–12.

    Article  CAS  Google Scholar 

  9. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc. 2008;130:10876–7.

    Article  CAS  Google Scholar 

  10. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene based antibacterial paper. ACS Nano. 2010;4:4317–23.

    Article  CAS  Google Scholar 

  11. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010;4:5731–6.

    Article  CAS  Google Scholar 

  12. Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and ecient photo-thermal therapy. Nano Lett. 2010;10:3318–23.

    Article  CAS  Google Scholar 

  13. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue SH, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133:6825–31.

    Article  CAS  Google Scholar 

  14. Heo C, Yoo J, Lee S, Jo A, Jung S, Yoo H, Lee YH, Suh M. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials. 2011;32:19–27.

    Article  CAS  Google Scholar 

  15. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res Lett. 2011;6:4317–23.

    Google Scholar 

  16. Ryoo SR, Kim YK, Kim MH, Min DH. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano. 2010;4:6587–98.

    Article  CAS  Google Scholar 

  17. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu YF, Wang HF. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2010;200:201–10.

    Article  Google Scholar 

  18. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by bio-compatible poly-l-lysine. Langmuir. 2009;25:12030–3.

    Article  CAS  Google Scholar 

  19. Luo J, Cote LJ, Tung VC, Tan ATL, Goins PE, Wu J, Huang J. Graphene oxide nanocolloids. J Am Chem Soc. 2010;132:17667–9.

    Article  CAS  Google Scholar 

  20. Kim YJ, Abe Y, Yanaglura T, Park KC, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus MS. Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon. 2007;45:2116–25.

    Article  CAS  Google Scholar 

  21. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater. 2009;19:1800–9.

    Article  CAS  Google Scholar 

  22. Yang XQ, Wu DC, Chen XM, Fu RW. Nitrogen enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C. 2010;114:8581–6.

    Article  CAS  Google Scholar 

  23. Jurewicz K, Babel K, Ziolkowski A, Wachowska H. Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta. 2003;48:1491–8.

    Article  CAS  Google Scholar 

  24. Jurewicz K, Babel K, Pietrzak R, Delpeux S, Wachowska H. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon. 2006;44:2368–75.

    Article  CAS  Google Scholar 

  25. Pietrzak R, Jurewicz K, Nowicki P, Babel K, Wachowska H. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors. Fuel. 2010;89:3457–67.

    Article  CAS  Google Scholar 

  26. Guo HL, Gao QM. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources. 2009;186:551–6.

    Article  CAS  Google Scholar 

  27. Lai LF, Chen LW, Zhan D, Sun L, Liu JP, Lim SH, Poh CK, Shen ZX, Lin JY. One-step synthesis of G-NH2 raphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon. 2011;49:3250–7.

    Article  CAS  Google Scholar 

  28. Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Gracio JJA, Dash D. Amine-modied graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6:2731–40.

    Article  CAS  Google Scholar 

  29. Li DJ, Cui FZ, Gu HQ. F ion implantation induced cell attachment on intraocular lens. Biomaterials. 1999;20:1889–96.

    Article  CAS  Google Scholar 

  30. Venkatesan T, Dynes RC, Wilkens B, White AE, Gibson JM, Hamm R. Comparison of conductivity produced in polymers and carbon films by pyrolysis and high energy ion irradiation. Nucl Instrum Meth B. 1984;1:599–604.

    Article  Google Scholar 

  31. Koh SK, Choi KW, Cho JS, Song SK, Kim YM, Jung HJ. Ar+ ion irradiation in oxygen environment for improving wettability of polymethylmethacrylate. J Mater Res. 1996;11:2933–9.

    Article  CAS  Google Scholar 

  32. Wang GH, Pan GQ, Dou L. Proton beam modification of isotac-tic polypropylene. Nucl Instrum Meth B. 1987;27:410–6.

    Article  Google Scholar 

  33. Wang GH, Li XJ, Zhu YZ, Liu QS, Hu NX, Gu XS, Wang Q, Yu RX, Wang TJ. Radiation effects on polyethylene and polypropylene by electrons and protons. Nucl Instrum Meth B. 1985;7:497–500.

    Article  Google Scholar 

  34. Licciardello A, Fragala ME, Foti G, Compagnini G, Puglisi Q. Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate. Nucl Instrum Meth B. 1996;116:168–72.

    Article  CAS  Google Scholar 

  35. Lee HJ, Park J, Yoon OJ, Kim HW, Lee DY, Kim DH, Lee WB, Lee NE, Bonventre JV, Kim SS. Amine-modied single-walled carbon nanotubes protect neuronsfrom injuryina rat stroke model. Nat Nanotechnol. 2011;6:121–5.

    Article  CAS  Google Scholar 

  36. Lee W, Parpura V. Wiring neurons with carbon nanotubes. Front Neuroeng. 2009;2:1–3.

    CAS  Google Scholar 

  37. Geng DS, Yang SL, Zhang Y, Yang JL, Liu J, Li RY, Sham TK, Sun XL, Ye S, Knights S. Nitrogen doping effects on the structure of graphene. Appl Surf Sci. 2011;257:9193–8.

    Article  CAS  Google Scholar 

  38. Grinnel F, Feld MK. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem. 1982;257:4888–93.

    Google Scholar 

  39. Lu DR, Park K. Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen. J Colloid Interface Sci. 1991;144:271–81.

    Article  CAS  Google Scholar 

  40. Zhao ML, Li DJ, Yuan L, Yue YC, Liu H, Sun XL. Differences in cytocompatibility and hemocompatibility between carbon nanotubes and nitrogen-doped carbon nanotubes. Carbon. 2011;49:3125–33.

    Article  CAS  Google Scholar 

  41. Akasaka T, Yokoyama A, Matsuoka M, Hashimoto T, Watari F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mater Sci Eng, C. 2010;30:391–9.

    Article  CAS  Google Scholar 

  42. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006;6:1121–5.

    Article  CAS  Google Scholar 

  43. Yu X, Cai H, Zhang W, Li X, Pan N, Luo Y, Wang X, Hou JG. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano. 2011;5:952–8.

    Article  CAS  Google Scholar 

  44. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15–34.

    Article  CAS  Google Scholar 

  45. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials. 2006;27:4315–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (51272176, 11075116), National Basic Research Program of China (973 Program, 2012CB933600), and Youth Foundation of Tianjin Normal University (52XQ1204). The Key Project of Tianjin Municipal Natural Science Foundation of China (13JCZDJC33900) supported partly the design and synthesis of graphene and NH2 ion implanted graphene (G-NH2). We appreciate Minsi Li, undergraduate student in School of Chemistry and Materials Science, University of Science and Technology of China, for her kind idea and contribution to synthesis of graphene and NH2 ion implanted graphene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, M., Li, M., Liu, X. et al. N-containing functional groups induced superior cytocompatible and hemocompatible graphene by NH2 ion implantation. J Mater Sci: Mater Med 24, 2741–2748 (2013). https://doi.org/10.1007/s10856-013-5016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5016-0

Keywords

Navigation