Journal of Materials Science: Materials in Medicine

, Volume 24, Issue 11, pp 2577–2587 | Cite as

Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells

  • Lingling Tian
  • Molamma P. PrabhakaranEmail author
  • Xin DingEmail author
  • Dan Kai
  • Seeram Ramakrishna


The potential of cardiomyogenic differentiation of human mesenchymal stem cells (hMSCs) on emulsion electrospun scaffold containing poly(l-lactic acid)-co-poly-(ε-caprolactone), gelatin and vascular endothelial growth factor (PLCL/GV) was investigated in this study. The characterizations of the scaffold were carried out using scanning electron microscope (SEM), transmission electron microscope, water contact angle and porometer. The proliferation of hMSCs showed that 73.4 % higher cell proliferation on PLCL/GV scaffolds than that on PLCL scaffold after 20 days of cell culture. Results of 5-chloromethylfluorescein diacetate staining and SEM morphology analysis indicated that hMSCs differentiated on PLCL/GV scaffolds showed irregular morphology of cardiomyocyte phenotype compared to the typical long and thin hMSC phenotype. Immunostaining results showed the expression of alpha actinin and myosin heavy chain. Our studies identified emulsion electrospinning as a method for fabrication of core–shell fibers suitable for the differentiation of stem cells to cardiac cells, with potential application in cardiac regeneration.


Vascular Endothelial Growth Factor Water Contact Angle Electrospun Nanofibers Vascular Endothelial Growth Factor Protein Nanofibrous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the Singapore National Research Foundation under CREATE programme: The Regenerative Medicine Initiative in Cardiac Restoration Therapy (NRF-Technion R-398-001-065-592). Ms Lingling Tian would also like to acknowledge the China Scholarship Council for granting a scholarship that enabled her to pursue this work at NUS, Singapore.


  1. 1.
    Shim WSN, Jiang S, Wong P, Tan J, Chua YL, Tan YS, et al. Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2004;324(2):481–8.CrossRefGoogle Scholar
  2. 2.
    Xu WR, Zhang XR, Qian H, Zhu W, Sun XC, Hu J, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med. 2004;229(7):623–31.Google Scholar
  3. 3.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93–8.CrossRefGoogle Scholar
  4. 4.
    Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2006;340(2):639–47.CrossRefGoogle Scholar
  5. 5.
    Fine GC, Liao R, Sohn RL. Cell therapy for cardiac repair. Panminerva Med. 2008;50(2):129–37.Google Scholar
  6. 6.
    Labovsky V, Hofer EL, Feldman L, Vallone VF, Rivello HG, Bayes-Genis A, et al. Cardiomyogenic differentiation of human bone marrow mesenchymal cells: role of cardiac extract from neonatal rat cardiomyocytes. Differentiation. 2010;79(2):93–101.CrossRefGoogle Scholar
  7. 7.
    Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater. 2011;6(5).Google Scholar
  8. 8.
    Shepler SA, Patel AN. Cardiac cell therapy: a treatment option for cardiomyopathy. Crit Care Nurs Q. 2007;30:74–80.CrossRefGoogle Scholar
  9. 9.
    Nauta AJ. fIBBE WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.CrossRefGoogle Scholar
  10. 10.
    Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697–705.CrossRefGoogle Scholar
  11. 11.
    Saito T, Dennis JE, Lennon DP, Young RG, Caplan AI. Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng. 1995;1(4):327–43.CrossRefGoogle Scholar
  12. 12.
    Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.CrossRefGoogle Scholar
  13. 13.
    Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9.CrossRefGoogle Scholar
  14. 14.
    Xu XL, Zhuang XL, Chen XS, Wang XR, Yang LX, Jing XB. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun. 2006;27(19):1637–42.CrossRefGoogle Scholar
  15. 15.
    Prabhakaran MP, Venugopal JR, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009;30(28):4996–5003.CrossRefGoogle Scholar
  16. 16.
    Tian LL, Prabhakaran MP, Ding X, Kai D, Ramakrishna S. Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-epsilon-caprolactone) nanofibers for sustained release in cardiac tissue engineering. J Mater Sci. 2012;47(7):3272–81.CrossRefGoogle Scholar
  17. 17.
    Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29(19):2907–14.CrossRefGoogle Scholar
  18. 18.
    Zhang S, Huang YQ, Yang XP, Mei F, Ma Q, Chen GQ, et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A. 2009;90A(3):671–9.CrossRefGoogle Scholar
  19. 19.
    Bordenave L, Caix J, Bassecathalinat B, Baquey C, Midy D, Baste JC, et al. Experimental evaluation of a gelatin-coated polyester graft used as an arterial substitute. Biomaterials. 1989;10(4):235–42.CrossRefGoogle Scholar
  20. 20.
    Ginalska G, Kowalczuk D, Osinska M. A chemical method of gentamicin bonding to gelatine-sealed prosthetic vascular grafts. Int J Pharm. 2005;288(1):131–40.CrossRefGoogle Scholar
  21. 21.
    Niu S, Kurumatani H, Satoh S, Kanda K, Oka T, Watanabe K. Small diameter vascular prostheses with incorporated bioabsorbable matrices. A preliminary study. ASAIO J. 1993;39(3):M750–3.CrossRefGoogle Scholar
  22. 22.
    Song YH, Gehmert S, Sadat S, Pinkernell K, Bai XW, Matthias N, et al. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun. 2007;354(4):999–1003.CrossRefGoogle Scholar
  23. 23.
    Chen Y, Amende I, Hampton TG, Yang YK, Ke QG, Min JY, et al. Vascular endothelial growth factor promotes cardiomyocyte differentiation of embryonic stem cells. Am J Physiol Heart Circ Physiol. 2006;291(4):H1653–8.CrossRefGoogle Scholar
  24. 24.
    Cabello N, Remelli R, Canela L, Soriguera A, Mallol J, Canela EI, et al. Actin-binding protein alpha-actinin-1 interacts with the metabotropic glutamate receptor type 5b and modulates the cell surface expression and function of the receptor. J Biol Chem. 2007;282(16):12143–53.CrossRefGoogle Scholar
  25. 25.
    Yamauchi-Takihara K, Sole MJ, Liew J, Ing D, Liew CC. Characterization of human cardiac myosin heavy chain genes. Proc Natl Acad Sci USA. 1989;86(10):3504–8.CrossRefGoogle Scholar
  26. 26.
    Akhyari P, Kamiya H, Haverich A, Karck M, Lichtenberg A. Myocardial tissue engineering: the extracellular matrix. Eur J Cardiothorac Surg. 2008;34(2):229–41.CrossRefGoogle Scholar
  27. 27.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.CrossRefGoogle Scholar
  28. 28.
    Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, et al. A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol. 2009;4(1):17–27.CrossRefGoogle Scholar
  29. 29.
    Wu LL, Li H, Li S, Li XR, Yuan XY, Li XL, et al. Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J Biomed Mater Res A. 2010;92A(2):563–74.Google Scholar
  30. 30.
    Zhou SB, Peng HS, Yu XJ, Zheng XT, Cui WG, Zhang ZR, et al. Preparation and characterization of a novel electrospun spider silk fibroin/poly(d, l-lactide) composite fiber. J Phys Chem B. 2008;112(36):11209–16.CrossRefGoogle Scholar
  31. 31.
    Jin GR, Prabhakaran MP, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 2011;7(8):3113–22.CrossRefGoogle Scholar
  32. 32.
    Hosseinkhani H, Hosseinkhani M, Kobayashi H. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers. Biomed Mater. 2006;1(1):8–15.CrossRefGoogle Scholar
  33. 33.
    Yan XB, Lv AL, Xing YJ, Liu BW, Hou J, Huang W, et al. Inhibition of p53–p21 pathway promotes the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem. 2011;354(1–2):21–8.CrossRefGoogle Scholar
  34. 34.
    Ruixing Y, Dezhai Y, Hai W, Kai H, Xianghong W, Yuming C. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur J Heart Fail. 2007;9(4):343–51.CrossRefGoogle Scholar
  35. 35.
    Zhang J, Ding L, Zhao Y, Sun W, Chen B, Lin H, et al. Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation. 2009;119(13):1776–84.CrossRefGoogle Scholar
  36. 36.
    Yockman JW, Choi D, Whitten MG, Chang CW, Kastenmeier A, Erickson H, et al. Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct. Gene Ther. 2009;16(1):127–35.CrossRefGoogle Scholar
  37. 37.
    Hao X, Silva EA, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, et al. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res. 2007;75(1):178–85.CrossRefGoogle Scholar
  38. 38.
    Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000;102(8):898–901.CrossRefGoogle Scholar
  39. 39.
    De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol. 2010;20(10):609–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Textile Science & TechnologyMinistry of Education of China, Donghua UniversityShanghaiChina
  2. 2.College of TextilesDonghua UniversityShanghaiChina
  3. 3.Center for Nanofibers & Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations