Ultrathin sP(EO-stat-PO) hydrogel coatings are biocompatible and preserve functionality of surface bound growth factors in vivo

  • Carl Neuerburg
  • Stefan Recknagel
  • Jörg Fiedler
  • Jürgen Groll
  • Martin Moeller
  • Kristina Bruellhoff
  • Heiko Reichel
  • Anita Ignatius
  • Rolf E. Brenner
Article

Abstract

Hydrogel coatings prepared from reactive star shaped polyethylene oxide based prepolymers (NCO-sP(EO-stat-PO)) minimize unspecific protein adsorption in vitro, while proteins immobilized on NCO-sP(EO-stat-PO) coatings retain their structure and biological function. The aim of the present study was to assess biocompatibility and the effect on early osseointegrative properties of a NCO-sP(EO-stat-PO) coating with additional RGD-peptides and augmentation with bone morphogenetic protein-4 (BMP) used on a medical grade high-density polyethylene (HDPE) base under in vivo circumstances. For testing of biocompatibility dishes with large amounts of bulk NCO-sP(EO-stat-PO) were implanted subcutaneously into 14 Wistar rats. In a second set-up functionalization of implants with ultrathin surface layers by coating ammonia-plasma treated HDPE with NCO-sP(EO-stat-PO), functionalization with linear RGD-peptides, and augmentation with RGD and BMP-4 was analyzed. Therefore, implants were placed subcutaneously in the paravertebral tissue and transcortically in the distal femur of another 14 Wistar rats. Both tests revealed no signs of enhanced inflammation of the surrounding tissue analyzed by CD68, IL-1ß-/TNF-α-antibody staining, nor systemic toxic reactions according to histological analysis of various organs. The mean thickness of the fibrous tissue surrounding the femoral implants was highest in native HDPE-implants and tended to be lower in all NCO-sP(EO-stat-PO) modified implants. Micro-CT analysis revealed a significant increase of peri-implant bone volume in RGD/BMP-4 coated samples. These results demonstrate that even very low amounts of surface bound growth factors do have significant effects when immobilized in an environment that retains their biological function. Hence, NCO-sP(EO-stat-PO)-coatings could offer an attractive platform to improve integration of orthopedic implants.

References

  1. 1.
    Groll J, Fiedler J, Bruellhoff K, Moeller M, Brenner RE. Novel surface coatings modulating eukaryotic cell adhesion and preventing implant infection. Int J Artif Organs. 2009;32:655–62.Google Scholar
  2. 2.
    Archibeck MJ, White RE Jr. What’s new in adult reconstructive knee surgery. J Bone Joint Surg Am. 2006;88(7):1677–86. doi:10.2106/JBJS.F.00450.CrossRefGoogle Scholar
  3. 3.
    de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25(10):2357–69. doi:10.1007/s11095-008-9617-0.CrossRefGoogle Scholar
  4. 4.
    Groll J, Amirgoulova EV, Ameringer T, Heyes CD, Rocker C, Nienhaus GU, et al. Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J Am Chem Soc. 2004;126(13):4234–9. doi:10.1021/ja0318028.CrossRefGoogle Scholar
  5. 5.
    Groll J, Fiedler J, Engelhard E, Ameringer T, Tugulu S, Klok HA, et al. A novel star PEG-derived surface coating for specific cell adhesion. J Biomed Mater Res A. 2005;74(4):607–17. doi:10.1002/jbm.a.30335.Google Scholar
  6. 6.
    Groll J, Haubensak W, Ameringer T, Moeller M. Ultrathin coatings from isocyanate terminated star PEG prepolymers: patterning of proteins on the layers. Langmuir. 2005;21(7):3076–83.CrossRefGoogle Scholar
  7. 7.
    Heuts J, Salber J, Goldyn AM, Janser R, Moller M, Klee D. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components. J Biomed Mater Res A. 2010;92(4):1538–51. doi:10.1002/jbm.a.32478.Google Scholar
  8. 8.
    Fiedler J, Groll J, Engelhardt E, Gasteier P, Dahmen C, Kessler H, et al. NCO-sP(EO-stat-PO) surface coatings preserve biochemical properties of RGD peptides. Int J Mol Med. 2011;27(1):139–45. doi:10.3892/ijmm.2010.553.Google Scholar
  9. 9.
    Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G, et al. Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther. 2011;11(3):375–85. doi:10.1517/14712598.2011.554814.CrossRefGoogle Scholar
  10. 10.
    Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 2011;35(9):1271–80. doi:10.1007/s00264-011-1301-z.CrossRefGoogle Scholar
  11. 11.
    Bleuming SA, He XC, Kodach LL, Hardwick JC, Koopman FA, Ten Kate FJ, et al. Bone morphogenetic protein signaling suppresses tumorigenesis at gastric epithelial transition zones in mice. Cancer Res. 2007;67(17):8149–55. doi:10.1158/0008-5472.CAN-06-4659.CrossRefGoogle Scholar
  12. 12.
    von Einem S, Schwarz E, Rudolph R. A novel TWO-STEP renaturation procedure for efficient production of recombinant BMP-2. Protein Expr Purif. 2010;73(1):65–9. doi:10.1016/j.pep.2010.03.009.CrossRefGoogle Scholar
  13. 13.
    Hagi TT, Wu G, Liu Y, Hunziker EB. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment. Bone. 2010;46(5):1322–7. doi:10.1016/j.bone.2010.02.010.CrossRefGoogle Scholar
  14. 14.
    Liu Y, Enggist L, Kuffer AF, Buser D, Hunziker EB. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials. 2007;28(16):2677–86. doi:10.1016/j.biomaterials.2007.02.003.CrossRefGoogle Scholar
  15. 15.
    Ichinohe N, Kuboki Y, Tabata Y. Bone regeneration using titanium nonwoven fabrics combined with fgf-2 release from gelatin hydrogel microspheres in rabbit skull defects. Tissue Eng Part A. 2008;14(10):1663–71. doi:10.1089/ten.tea.2006.0350.CrossRefGoogle Scholar
  16. 16.
    Rao L, Zhou H, Li T, Li C, Duan YY. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomater. 2012;8(6):2233–42. doi:10.1016/j.actbio.2012.03.001.CrossRefGoogle Scholar
  17. 17.
    Götz HBU, Bartelink CF, Grünbauer HJM, Möller M. Preparation of isophorone diisocyanate terminated star polyethers. Macromol Mater Eng. 2002;287(4):223–30.CrossRefGoogle Scholar
  18. 18.
    Dalton PD, Hostert C, Albrecht K, Moeller M, Groll J. Structure and properties of urea-crosslinked star poly[(ethylene oxide)-ran-(propylene oxide)] hydrogels. Macromol Biosci. 2008;8(10):923–31. doi:10.1002/mabi.200800080.CrossRefGoogle Scholar
  19. 19.
    Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, et al. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone. 2009;44(2):335–44. doi:10.1016/j.bone.2008.10.039.CrossRefGoogle Scholar
  20. 20.
    Koepp HE, Schorlemmer S, Kessler S, Brenner RE, Claes L, Gunther KP, et al. Biocompatibility and osseointegration of beta-TCP: histomorphological and biomechanical studies in a weight-bearing sheep model. J Biomed Mater Res B Appl Biomater. 2004;70(2):209–17. doi:10.1002/jbm.b.30034.CrossRefGoogle Scholar
  21. 21.
    Schliephake H, Aref A, Scharnweber D, Bierbaum S, Sewing A. Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: organic coatings. Clin Oral Implants Res. 2009;20(1):31–7. doi:10.1111/j.1600-0501.2008.01603.x.CrossRefGoogle Scholar
  22. 22.
    Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater. 2005;73(1):88–96. doi:10.1002/jbm.b.30183.Google Scholar
  23. 23.
    Gasteier P, Reska A, Schulte P, Salber J, Offenhausser A, Moeller M, et al. Surface grafting of PEO-based star-shaped molecules for bioanalytical and biomedical applications. Macromol Biosci. 2007;7(8):1010–23. doi:10.1002/mabi.200700064.CrossRefGoogle Scholar
  24. 24.
    Salber J, Grater S, Harwardt M, Hofmann M, Klee D, Dujic J, et al. Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates. Small. 2007;3(6):1023–31. doi:10.1002/smll.200600596.CrossRefGoogle Scholar
  25. 25.
    Wang X, Kan B, Wang Y, Dong P, Shi S, Guo G, et al. Safety evaluation of amphiphilic three-armed star-shaped copolymer micelles. J Pharm Sci. 2010;99(6):2830–8. doi:10.1002/jps.22042.Google Scholar
  26. 26.
    Bridges AW, Singh N, Burns KL, Babensee JE, Lyon Andrew L, Garcia AJ. Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials. 2008;29(35):4605–15. doi:10.1016/j.biomaterials.2008.08.015.CrossRefGoogle Scholar
  27. 27.
    Bouet T, Schmitt M, Desuzinges C, Eloy R. Quantitative in vivo studies of hyperemia in the course of the tissue response to biomaterial implantation. J Biomed Mater Res. 1990;24(11):1439–61. doi:10.1002/jbm.820241104.CrossRefGoogle Scholar
  28. 28.
    Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, Kinne RW. Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis. 2004;63(7):774–84. doi:10.1136/ard.2003.013029.CrossRefGoogle Scholar
  29. 29.
    Recknagel S, Bindl R, Kurz J, Wehner T, Ehrnthaller C, Knoferl MW, et al. Experimental blunt chest trauma impairs fracture healing in rats. J Orthop Res. 2011;29(5):734–9. doi:10.1002/jor.21299.CrossRefGoogle Scholar
  30. 30.
    Kim J, Dadsetan M, Ameenuddin S, Windebank AJ, Yaszemski MJ, Lu L. In vivo biodegradation and biocompatibility of PEG/sebacic acid-based hydrogels using a cage implant system. J Biomed Mater Res A. 2010;95(1):191–7. doi:10.1002/jbm.a.32810.Google Scholar
  31. 31.
    Kang SM, Kong B, Oh E, Choi JS, Choi IS. Osteoconductive conjugation of bone morphogenetic protein-2 onto titanium/titanium oxide surfaces coated with non-biofouling poly(poly(ethylene glycol) methacrylate). Colloids Surf B Biointerfaces. 2010;75(1):385–9. doi:10.1016/j.colsurfb.2009.08.039.CrossRefGoogle Scholar
  32. 32.
    Lai YL, Kuo NC, Hsiao WK, Yew TL, Lee SY, Chen HL. Intramarrow bone morphogenetic protein 4 gene delivery enhances early implant stability in femurs of ovariectomized rabbits. J Periodontol. 2011;82(7):1043–50. doi:10.1902/jop.2011.100404.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carl Neuerburg
    • 1
    • 6
  • Stefan Recknagel
    • 2
  • Jörg Fiedler
    • 3
  • Jürgen Groll
    • 4
    • 5
  • Martin Moeller
    • 4
  • Kristina Bruellhoff
    • 4
  • Heiko Reichel
    • 1
  • Anita Ignatius
    • 2
  • Rolf E. Brenner
    • 3
  1. 1.Department of OrthopaedicsUniversity of UlmUlmGermany
  2. 2.Institute of Orthopaedic Research and BiomechanicsUniversity of UlmUlmGermany
  3. 3.Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopaedicsUniversity of UlmUlmGermany
  4. 4.DWI e.V. and Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
  5. 5.Department of Functional Materials in Medicine and DentistryUniversity Hospital WürzburgWürzburgGermany
  6. 6.Experimental Surgery and Regenerative Medicine, Department of SurgeryLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations