Skip to main content

Advertisement

Log in

Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The technique of guided tissue regeneration (GTR) has evolved over recent years in an attempt to achieve periodontal tissue regeneration by the use of a barrier membrane. However, there are significant limitations in the currently available membranes and overall outcomes may be limited. A degradable composite material was investigated as a potential GTR membrane material. Polylactic acid (PLA) and nanohydroxyapatite (nHA) composite was analysed, its bioactive potential and suitability as a carrier system for growth factors were assessed. The effect of nHA concentrations and the addition of platelet derived growth factor (PDGF) on osteoblast proliferation and differentiation was investigated. The bioactivity was dependent on the nHA concentration in the films, with more apatite deposited on films containing higher nHA content. Osteoblasts proliferated well on samples containing low nHA content and differentiated on films with higher nHA content. The composite films were able to deliver PDGF and cell proliferation increased on samples that were pre-absorbed with the growth factor. nHA–PLA composite films are able to deliver active PDGF. In addition the bioactivity and cell differentiation was higher on films containing more nHA. The use of a nHA–PLA composite material containing a high concentration of nHA may be a useful material for GTR membrane as it will not only act as a barrier, but may also be able to enhance bone regeneration by delivery of biologically active molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006; 19(2):CD001724.

    Google Scholar 

  2. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30:58–62.

    Article  CAS  Google Scholar 

  3. Bunyaratavej P, Wang H-L. Collagen membranes. A review. J Periodontol. 2001;72:215–29.

    Article  CAS  Google Scholar 

  4. Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials. 2002;23:2027–33.

    Article  CAS  Google Scholar 

  5. Aurer A, Jorgić-Srdjak K. Membranes for periodontal regeneration. Acta Stomatol Croat. 2005;39:107–12.

    Google Scholar 

  6. Kasaj A, Reichert C, Götz H, Röhrig B, Smeets R, Willershausen B. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face Med. 2008;4:22.

    Article  Google Scholar 

  7. Cooper ML, Hansbrough JF, Spielvogel RL, Cohen R, Bartel RL, Naughton G. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials. 1991;12:243–8.

    Article  CAS  Google Scholar 

  8. Kumar AV, Staffenberg DA, Petronio JA, Wood RJ. Bioabsorbable plates and screws in pediatric craniofacial surgery: a review of 22 cases. J Craniofac Surg. 1997;8:97–9.

    Article  CAS  Google Scholar 

  9. Rokkanen P, Bostman O, Vainionpaa S, Vihtonen K, Tormala P, Laiho J, et al. Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet. 1985;1:1422–4.

    Article  CAS  Google Scholar 

  10. Domb AJ. Polymeric carriers for regional drug therapy. Mol Med Today. 1995;1:134–9.

    Article  CAS  Google Scholar 

  11. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-lactide (PLLA): Part I. Basic characteristics. Biomaterials. 1999;20:859–77.

    Article  CAS  Google Scholar 

  12. Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate polylactide composites. Biomaterials. 2002;23:1579–85.

    Article  CAS  Google Scholar 

  13. Cho MI, Lin WL, Genco RJ. Platelet-derived growth factor-modulated guided tissue regenerative therapy. J Periodontol. 1995;66:522–30.

    Article  CAS  Google Scholar 

  14. Hughes FJ, Turner W, Belibasakis G, Martuscelli G. Effects of growth factors and cytokines on osteoblast differentiation. Periodontology 2000. 2006;41:48–72.

    Article  Google Scholar 

  15. Giannobile WV. Periodontal tissue engineering by growth factors. Bone. 1996;19:S23–37.

    Article  Google Scholar 

  16. Talal A, Waheed N, Al-Masri M, McKay IJ, Tanner KE, Hughes FJ. Absorption and release of protein from hydroxyapatite–polylactic acid (HA-PLA) membranes. J Dent. 2009;37:820–6.

    Article  CAS  Google Scholar 

  17. Wang F, Li M-S, Lu Y-P, Qi Y-X. A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett. 2005;59:916–9.

    Article  CAS  Google Scholar 

  18. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface–structure changes in bioactive A–W glass–ceramic. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  19. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals. A review study on the analytical methods. J Biomed Mater Res. 2002;62:600–12.

    Article  CAS  Google Scholar 

  20. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8:1–4.

    Article  CAS  Google Scholar 

  21. Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, et al. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials. 2004;25:3807–12.

    Article  CAS  Google Scholar 

  22. Khan AS, Ahmed Z, Edirisinghe MJ, Wong FS, Rehman IU. Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane–nanohydroxyapatite fibres. Acta Biomater. 2008;4:1275–87.

    Article  CAS  Google Scholar 

  23. Teng SH, Lee EJ, Park CS, Choi WY, Shin DS, Kim HE. Bioactive nanocomposite coatings of collagen/hydroxyapatite on titanium substrates. J Mater Sci Mater Med. 2008;19:2453–61.

    Article  CAS  Google Scholar 

  24. Kesenci K, Fambri L, Migliaresi C, Piskin E. Preparation and properties of poly(l-lactide)/hydroxyapatite composites. J Biomater Sci Polym Ed. 2000;11:617–32.

    Article  CAS  Google Scholar 

  25. Bonfield W, Wang M, Tanner KE. Interfaces in analogue biomaterials. Acta Mater. 1998;46:2509–18.

    Article  CAS  Google Scholar 

  26. Pereira MM, Clark AE, Hench LL. Calcium-phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res. 1994;28:693–8.

    Article  CAS  Google Scholar 

  27. Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998;46:2519–27.

    Article  CAS  Google Scholar 

  28. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. In vitro adhesion and biocompatibility of osteoblast-like cells to poly(methylmethacrylate) and poly(ethylmethacrylate) bone cements. J Mater Sci Mater Med. 2002;13:311–4.

    Article  CAS  Google Scholar 

  29. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR. PLDLA/bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004;25:3013–21.

    Article  CAS  Google Scholar 

  30. Matsuyama T, Lau KH, Wergedal JE. Monolayer cultures of normal human bone cells contain multiple subpopulations of alkaline phosphatase positive cells. Calcif Tissue Int. 1990;47:276–83.

    Article  CAS  Google Scholar 

  31. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993;14:424–42.

    CAS  Google Scholar 

  32. Hott M, Noel B, Bernache-Assolant D, Rey C, Marie PJ. Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. J Biomed Mater Res. 1997;37:508–16.

    Article  CAS  Google Scholar 

  33. Matsumura K, Hyon SH, Nakajima N, Iwata H, Watazu A, Tsutsumi S. Surface modification of poly(ethylene-co-vinyl alcohol). Hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomaterials. 2004;25:4817–24.

    Article  CAS  Google Scholar 

  34. Zhang Y, Hao L, Savalani MM, Harris RA, Di Silvio L, Tanner KE. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering. J Biomed Mater Res A. 2009;91(4):1018–27.

    CAS  Google Scholar 

  35. Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-bb (RHPDGF-BB) and allogenic bone. J Periodontol. 2003;74:1282–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the help provided by Peter Chung at Department of Geographical and Earth Sciences, University of Glasgow in obtaining the SEM images. Drs. I. U. Rehman and A. S. Khan at Department of Materials, Queen Mary University of London for help with FTIR. PURAC Biochem, The Netherlands for providing the PLA.

Conflict of interest

There are no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Talal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talal, A., McKay, I.J., Tanner, K.E. et al. Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration. J Mater Sci: Mater Med 24, 2211–2221 (2013). https://doi.org/10.1007/s10856-013-4963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4963-9

Keywords

Navigation