Skip to main content
Log in

Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A high-voltage (10 kV) electrostatic antisolvent process was used to prepare methotrexate (MTX)-loaded, large, highly-porous poly-l-lactide (PLLA) microspheres. MTX solution in dimethyl sulfoxide (DMSO) and PLLA solution in dichloromethane (DCM) were homogeneously mixed, and then ammonium bicarbonate (AB) aqueous solution was added. The mixed solution was emulsified by ultrasonication with Pluronic F127 (PF127) as an emulsion stabilizer. The emulsion was electrosprayed by the specific high-voltage apparatus and dropped into a 100 mL of ethanol, which acted as an antisolvent for the solute and extracted DMSO and DCM, causing the co-precipitation of PLLA and MTX, thus forming microspheres with AB aqueous micro-droplets uniformly inlaid. The obtained MTX–PLLA microspheres were subsequently lyophilized to obtain large, highly-porous MTX–PLLA microspheres, which exhibited an identifiable spherical shape and a rough surface furnished with open pores, with a mean particle size of 25.0 μm, mass median aerodynamic diameter of 3.1 ± 0.2 μm, fine-particle fraction of 57.1 ± 1.6 %, and porosity of 81.8 %; furthermore, they offered a sustained release of MTX. X-ray diffraction and Fourier transform-infrared spectra revealed that no crystallinity or alteration of chemical structure occurred during the high-voltage electrostatic antisolvent process, which in this study was proved to have great potential for preparing highly-porous drug-loaded polymer microspheres for use in pulmonary drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meenach SA, Kim YJ, Kauffman KJ, Kanthamneni N, Bachelder EM, Ainslie KM. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery. Mol Pharm. 2012;9:290–8.

    Article  CAS  Google Scholar 

  2. Arnold MM, Gonnan EM, Schieber LJ, Munson EJ, Berkland C. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J Control Release. 2007;121:100–9.

    Article  CAS  Google Scholar 

  3. Ungaro F, Giovino C, Coletta C, Sorrentino R, Miro A, Quaglia F. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur J Pharm Sci. 2010;41:60–70.

    Article  CAS  Google Scholar 

  4. Gupta V, Ahsan F. Influence of PEI as a core modifying agent on PLGA microspheres of PGE1, a pulmonary selective vasodilator. Int J Pharm. 2011;413:51–62.

    Article  CAS  Google Scholar 

  5. Kwona MJ, Baea JH, Kima JJ, Nab K, Lee ES. Long acting porous microparticle for pulmonary protein delivery. Int J Pharm. 2007;333:5–9.

    Article  Google Scholar 

  6. Kirch J, Guenther M, Doshi N, Schaefer UF, Schneider M, Mitragotri S, Lehr CM. Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge-an ex vivo and in silico approach. J Control Release. 2012;159:128–34.

    Article  CAS  Google Scholar 

  7. Hadinoto K, Zhu K, Tan RBH. Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm. 2007;341:195–206.

    Article  CAS  Google Scholar 

  8. Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release. 2012;161:214–24.

    Article  CAS  Google Scholar 

  9. Oh YJ, Lee J, Seo JY, Rhim T, Kim SH, Yoon HJ, Lee KY. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release. 2011;150:56–62.

    Article  CAS  Google Scholar 

  10. Beck-Broichsitter M, Schweiger C, Schmehl T, Gessler T, Seeger W, Kissel T. Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. J Control Release. 2012;158:329–35.

    Article  CAS  Google Scholar 

  11. Lee J, Oh YJ, Lee SK, Lee KY. Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. J Control Release. 2010;146:61–7.

    Article  CAS  Google Scholar 

  12. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30:1947–53.

    Article  CAS  Google Scholar 

  13. Kim HK, Chung HJ, Park TG. Biodegradable polymeric microspheres with “open/closed” pores for sustained release of human growth hormone. J Control Release. 2006;112:167–74.

    Article  CAS  Google Scholar 

  14. Almeria B, Deng W, Fahmy TM, Gomez A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci. 2010;343:125–33.

    Article  CAS  Google Scholar 

  15. Xu Y, Hanna MA. Electrospray encapsulation of water-soluble protein with polylactide—effects of formulations on morphology, encapsulation efficiency and release profile of particles. Int J Pharm. 2006;320:30–6.

    Article  CAS  Google Scholar 

  16. Zhang W, He X. Encapsulation of living cells in small (approximately 100 μm) alginate microcapsules by electrostatic spraying: a parametric study. J Biomech Eng. 2009;131:074515.

    Article  Google Scholar 

  17. Zhou Y, Sun T, Chan M, Zhang J, Han ZY, Wang XW, Toh Y, Chen JP, Yu H. Scalable encapsulation of hepatocytes by electrostatic spraying. J Biotechnol. 2005;117:99–109.

    Article  CAS  Google Scholar 

  18. Steckel H, Brandes HG. A novel spray-drying technique to produce low density particles for pulmonary delivery. Int J Pharm. 2004;278:187–95.

    Article  CAS  Google Scholar 

  19. Xie JW, Wang CH. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor Cone-Jet mode. Biotechnol Bioeng. 2007;97:1278–90.

    Article  CAS  Google Scholar 

  20. Reyderman L, Stavchansky S. Electrostatic spraying and its use in drug delivery-cholesterol microspheres. Int J Pharm. 1995;124:75–85.

    Article  CAS  Google Scholar 

  21. Berkland C, Pack DW, Kim K. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(d, l-lactide-co-glycolide). Biomaterials. 2004;25:5649–58.

    Article  CAS  Google Scholar 

  22. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24:411–37.

    Article  CAS  Google Scholar 

  23. Giovagnoli S, Blasi P, Schoubben A, Rossi C, Ricci M. Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int J Pharm. 2007;333:103–11.

    Article  CAS  Google Scholar 

  24. Wan F, Møller EH, Yang M, Jørgensen L. Formulation technologies to overcome unfavorable properties of peptides and proteins for pulmonary delivery. Drug Discov Today Technol. 2012;9:e141–6.

    Article  CAS  Google Scholar 

  25. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36.

    Article  CAS  Google Scholar 

  26. Duncan G, Jess TJ, Mohamed F, Price NC, Kelly SM, van der Walle CF. The influence of protein solubilisation, conformation and size on the burst release from poly(lactide-co-glycolide) microspheres. J Control Release. 2005;110:34–48.

    Article  CAS  Google Scholar 

  27. Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159:14–26.

    Article  CAS  Google Scholar 

  28. Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for controlled elease coatings. J Control Release. 2008;125:1–15.

    Article  CAS  Google Scholar 

  29. Borgquist P, Korner A, Piculell L, Larsson A, Axelsson A. A model for the drug release from a polymer matrix tablet—effects of swelling and dissolution. J Control Release. 2006;113:216–25.

    Article  CAS  Google Scholar 

  30. Shrewsbury SB, Bosco AP, Uster PS. Pharmacokinetics of a novel submicron budesonide dispersion for nebulized delivery in asthma. Int J Pharm. 2009;365:12–7.

    Article  CAS  Google Scholar 

  31. Ibrahim BM, Park S, Han B, Yeo Y. A strategy to deliver genes to cystic fibrosis lungs: a battle with environment. J Control Release. 2011;155:289–95.

    Article  CAS  Google Scholar 

  32. Anabousi S, Bakowsky U, Schneider M, Huwer H, Lehr CM, Ehrhardt C. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci. 2006;29:367–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from Natural Science Foundation of Fujian Province (2010J05027 and 2011J01223) and National Natural Science Foundation of China (51103049, 81171471 and 31170939) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Zheng Chen or Shi-Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, AZ., Yang, YM., Wang, SB. et al. Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process. J Mater Sci: Mater Med 24, 1917–1925 (2013). https://doi.org/10.1007/s10856-013-4942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4942-1

Keywords

Navigation