Skip to main content
Log in

Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polyurethanes are very often used in the cardiovascular field due to their tunable physicochemical properties and acceptable hemocompatibility although they suffer from poor endothelialization. With this in mind, we proposed the synthesis of a family of degradable segmented poly(urea)urethanes (SPUUs) using amino acids (l-arginine, glycine and l-aspartic acid) as chain extenders. These polymers degraded slowly in PBS (pH 7.4) after 24 weeks via a gradual decrease in molecular weight. In contrast, accelerated degradation showed higher mass loss under acidic, alkaline and oxidative media. MTT tests on polyurethanes with l-arginine as chain extenders showed no adverse effect on the metabolism of human umbilical vein endothelial cells (HUVECs) indicating the leachables did not provoke any toxic responses. In addition, SPUUs containing l-arginine promoted higher levels of HUVECs adhesion, spreading and viability after 7 days compared to the commonly used Tecoflex® polyurethane. The biodegradability and HUVEC proliferation on l-arginine-based SPUUs suggests that they can be used in the design of vascular grafts for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials. 2011;32(21):4816–29. doi:10.1016/j.biomaterials.2011.03.034.

    Article  CAS  Google Scholar 

  2. Eglin D, Grad S, Gogolewski S, Alini M. Farsenol modified biodegradable polyurethanes for cartilage tissue engineering. J Biomed Mater Res A. 2010;92(1):393–408.

    Google Scholar 

  3. Ding M, He X, Wang Z, Li J, Tan H, Deng H, et al. Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials. 2011;32(35):9515–24. doi:10.1016/j.biomaterials.2011.08.074.

    Article  CAS  Google Scholar 

  4. Ryszkowska JL, Auguścik M, Sheikh A, Boccaccini AR. Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Compos Sci Technol. 2010;70(13):1894–908. doi:10.1016/j.compscitech.2010.05.011.

    Article  CAS  Google Scholar 

  5. Frost MC, Meyerhoff ME. Synthesis, characterization, and controlled nitric oxide release from S-nitrosothiol-derivatized fumed silica polymer filler particles. J Biomed Mater Res A. 2005;72A(4):409–19. doi:10.1002/jbm.a.30275.

    Article  CAS  Google Scholar 

  6. Klinger RY, LE Niklason. Tissue-engineered blood vessels. In: Vunjak-Novakovic G, Freshney RI, editors. Culture of cells for tissue engineering. Culture of specialized cells. Hoboken: John Wiley & Sons, Inc.; 2006. p. 294–305.

    Google Scholar 

  7. Khan OF, Sefton MV. Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol. 2011;29(8):379–87.

    Article  CAS  Google Scholar 

  8. McGuigan AP, Sefton MV. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials. 2007;28(16):2547–71.

    Article  CAS  Google Scholar 

  9. Larsen CC, Kligman F, Kottke-Marchant K, Marchant RE. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function. Biomaterials. 2006;27(28):4846–55.

    Article  CAS  Google Scholar 

  10. Kawamoto Y, Nakao A, Ito Y, Wada N, Kaibara M. Endothelial cells on plasma-treated segmented-polyurethane: adhesion strength, antithrombogenicity and cultivation in tubes. J Mater Sci Mater Med. 1997;8(9):551–7. doi:10.1023/a:1018598714996.

    Article  CAS  Google Scholar 

  11. Wang H, Feng Y, An B, Zhang W, Sun M, Fang Z, et al. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med. 2012;23(6):1499–510. doi:10.1007/s10856-012-4613-7.

    Article  CAS  Google Scholar 

  12. Özkucur N, Richter E, Wetzel C, Funk RHW, Monsees TK. Biological relevance of ion energy in performance of human endothelial cells on ion-implanted flexible polyurethane surfaces. J Biomed Mater Res A. 2010;93A(1):258–68.

    Google Scholar 

  13. Sidouni FZ, Nurdin N, Chabrecek P, Lohmann D, Vogt J, Xanthopoulos N, et al. Surface properties of a specifically modified high-grade medical polyurethane. Surf Sci. 2001;491(3):355–69. doi:10.1016/s0039-6028(01)01299-7.

    Article  CAS  Google Scholar 

  14. S-h Hsu, S-h Sun, Chen DC. Improved retention of endothelial cells seeded on polyurethane small-diameter vascular grafts modified by a recombinant RGD-containing protein. Artif Organs. 2003;27(12):1068–78.

    Article  Google Scholar 

  15. Li J, Ding M, Fu Q, Tan H, Xie X, Zhong Y. A novel strategy to graft RGD peptide on biomaterials surfaces for endothelization of small-diameter vascular graft and tissue engineering blood vessel. J Mater Sci Mater Med. 2008;19:2595.

    Article  CAS  Google Scholar 

  16. Wang D-a, Feng L-x, Ji J, Sun Y-h, Zheng X-x, Elisseeff JH. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. J Biomed Mater Res A. 2003;65A(4):498–510.

    Article  CAS  Google Scholar 

  17. Chuang T-W, Masters KS. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials. 2009;30(29):5341–51. doi:10.1016/j.biomaterials.2009.06.029.

    Article  CAS  Google Scholar 

  18. Chung T-W, Liu D-Z, Wang S-Y, Wang S-S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 2003;24(25):4655–61. doi:10.1016/s0142-9612(03)00361-2.

    Article  CAS  Google Scholar 

  19. Marcos-Fernández A, Abraham GA, Valentín JL, San Román J. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly([epsilon]-caprolactone) and amino acid derivatives. Polymer. 2006;47(3):785–98.

    Article  Google Scholar 

  20. Sarkar D, Lopina ST. Oxidative and enzymatic degradations of l-tyrosine based polyurethanes. Polym Degrad Stab. 2007;92(11):1994–2004.

    Article  CAS  Google Scholar 

  21. Skarja G, Woodhouse K. Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J Biomater Sci Polym Ed. 1998;9:271–95.

    Article  CAS  Google Scholar 

  22. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Quintana P, et al. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater. 2010;6(6):2035–44.

    Article  CAS  Google Scholar 

  23. Heijkants RGJC, Calck RVv, van Tienen TG, de Groot JH, Buma P, Pennings AJ, et al. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly([epsilon]-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials. 2005;26(20):4219–28.

    Article  CAS  Google Scholar 

  24. Knight PT, Lee KM, Qin H, Mather PT. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. Biomacromolecules. 2008;9(9):2458–67.

    Article  CAS  Google Scholar 

  25. Suchkova GG, Maklakov LI. Amide bands in the IR spectra of urethanes. Vib Spectrosc. 2009;51(2):333–9.

    Article  CAS  Google Scholar 

  26. Chan-Chan L, Vargas-Coronado R, Cervantes-Uc J, Cauich-Rodríguez J, Rath R, Phelps E, et al. Platelet adhesion and human umbilical vein endothelial cell cytocompatibility of biodegradable segmented polyurethanes prepared with 4,4′-methylene bis(cyclohexyl isocyanate), poly(caprolactone) diol and butanediol or dithioerythritol as chain extenders. J Biomater Appl. 2012. doi:10.1177/0885328212448259.

    Google Scholar 

  27. Ozaki S. Recent advances in isocyanate chemistry. Chem Rev. 1972;72(5):457–96.

    Article  Google Scholar 

  28. Skarja G, Woodhouse K. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J Biomater Sci Polym Ed. 2001;12(8):851–73.

    Article  CAS  Google Scholar 

  29. Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci. 2000;75(12):1522–34.

    Article  CAS  Google Scholar 

  30. Wang W, Guo Y, Otaigbe JU. Synthesis and characterization of novel biodegradable and biocompatible poly(ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer. 2008;49(20):4393–8.

    Article  CAS  Google Scholar 

  31. Sung H-J, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42. doi:10.1016/j.biomaterials.2004.01.066.

    Article  CAS  Google Scholar 

  32. Ang KC, Leong KF, Chua CK, Chandrasekaran M. Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed Mater Res A. 2007;80A(3):655–60.

    Article  CAS  Google Scholar 

  33. McBane JE, Santerre JP, Labow RS. The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation. J Biomed Mater Res A. 2007;82A(4):984–94.

    Article  CAS  Google Scholar 

  34. Dinnes DLM, Santerre JP, Labow RS. Influence of biodegradable and non-biodegradable material surfaces on the differentiation of human monocyte-derived macrophages. Differentiation. 2008;76(3):232–44.

    Article  CAS  Google Scholar 

  35. Hafeman AE, Zienkiewicz KJ, Zachman AL, Sung HJ, Nanney LB, Davidson JM, et al. Characterization of the degradation mechanisms of lysine-derived aliphatic poly (ester urethane) scaffolds. Biomaterials. 2011;32(2):419–29.

    Article  CAS  Google Scholar 

  36. Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010;5(1):107–20.

    Article  CAS  Google Scholar 

  37. Hung H-S, Wu C-C, Chien S, Hsu S-h. The behavior of endothelial cells on polyurethane nanocomposites and the associated signaling pathways. Biomaterials. 2009;30(8):1502–11. doi:10.1016/j.biomaterials.2008.12.003.

    Article  CAS  Google Scholar 

  38. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM. Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res. 2005;38(11):879–84.

    Article  CAS  Google Scholar 

  39. Thomas V, Jayabalan M. A new generation of high flex life polyurethane urea for polymer heart valve—studies on in vivo biocompatibility and biodurability. J Biomed Mater Res A. 2009;89A(1):192–205. doi:10.1002/jbm.a.31937.

    CAS  Google Scholar 

  40. Thomas V, Kumari TV, Jayabalan M. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications. Biomacromolecules. 2001;2(2):588–96. doi:10.1021/bm010044f.

    Article  CAS  Google Scholar 

  41. Meng S, Zhong W, Chou LL, Wang Q, Liu Z, Du Q. Phosphorylcholine end-capped poly-ε-caprolactone: a novel biodegradable material with improved antiadsorption property. J Appl Polym Sci. 2007;103(2):989–97. doi:10.1002/app.25288.

    Article  CAS  Google Scholar 

  42. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28(20):3074–82. doi:10.1016/j.biomaterials.2007.03.013.

    Article  CAS  Google Scholar 

  43. Bélanger M-C, Marois Y, Roy R, Mehri Y, Wagner E, Zhang Z, et al. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: blood compatibility and biocompatibility studies. Artif Organs. 2000;24(11):879–88. doi:10.1046/j.1525-1594.2000.06504.x.

    Article  Google Scholar 

  44. Blit PH, McClung WG, Brash JL, Woodhouse KA, Santerre JP. Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials. Biomaterials. 2011;32(25):5790–800. doi:10.1016/j.biomaterials.2011.04.067.

    Article  CAS  Google Scholar 

  45. Zhang C, Wen X, Vyavahare NR, Boland T. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials. 2008;29(28):3781–91. doi:10.1016/j.biomaterials.2008.06.009.

    Article  CAS  Google Scholar 

  46. Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41(3):422–30. doi:10.1002/(sici)1097-4636(19980905)41:3<422:aid-jbm12>3.0.co;2-k.

    Article  CAS  Google Scholar 

  47. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.

    Article  CAS  Google Scholar 

  48. Zhao H, Serrano MC, Popowich DA, Kibbe MR, Ameer GA. Biodegradable nitric oxide-releasing poly(diol citrate) elastomers. J Biomed Mater Res A. 2010;93A(1):356–63.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT (México) Grants 79371, 123913 and FOMIX 108160. The authors also acknowledge the Ministère des relations internationales du Québec (JOOO.0463) for funding the exchange program between Mexico and Québec. We also thank Dr. Frederick Morin from McGill NMR facility and D. H. Aguilar for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Cauich-Rodriguez.

Additional information

Chan-Chan LH and Tkaczyk C equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan-Chan, L.H., Tkaczyk, C., Vargas-Coronado, R.F. et al. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J Mater Sci: Mater Med 24, 1733–1744 (2013). https://doi.org/10.1007/s10856-013-4931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4931-4

Keywords

Navigation