Skip to main content
Log in

Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Laser direct write techniques represent a prospective alternative for engineering a new generation of hybrid biomaterials via the creation of patterns consisting of biological proteins onto practically any type of substrate. In this paper we report on the characterization of fibronectin features obtained onto titanium substrates by UV nanosecond laser transfer. Fourier-transform infrared spectroscopy measurements evidenced no modification in the secondary structure of the post-transferred protein. The molecular weight of the transferred protein was identical to the initial fibronectin, no fragment bands being found in the transferred protein’s Western blot migration profile. The presence of the cell-binding domain sequence and the mannose groups within the transferred molecules was revealed by anti-fibronectin monoclonal antibody immunolabelling and FITC-Concanavalin-A staining, respectively. The in vitro tests performed with MC3T3-E1 osteoblast-like cells and Swiss-3T3 fibroblasts showed that the cells’ morphology and spreading were strongly influenced by the presence of the fibronectin spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Du Y, Lo E, Ali S, Khademhosseini A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA. 2008;105:9522–7.

    Article  CAS  Google Scholar 

  2. Thiel M, Fischer J, von Freymann G, Wegener M. Laser direct writing of three-dimensional nanostructures using a continuous-wave laser at 532 nm. Appl Phys Lett. 2010;94:221102.

    Article  Google Scholar 

  3. Melissinaki V, Gill AA, Ortega I, Vamvakaki M, Ranella A, Haycock JW, Fotakis C, Farsari M, Claeyssens F. Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication. 2011;3:045005.

    Article  CAS  Google Scholar 

  4. Serra P, Fernandez-Pradas JM, Colina M, Duocastella M, Dominguez J, Morenza JL. Laser-induced forward Transfer: a direct-writing technique for biosensors preparation. J Laser Micro/Nanoeng. 2006;1(3):236–42.

    Article  CAS  Google Scholar 

  5. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A. 2009;15:205–19.

    Article  CAS  Google Scholar 

  6. Schultze V, Wagner M. Laser-induced forward transfer of aluminium. Appl Surf Sci. 1991;52:303–9.

    Article  CAS  Google Scholar 

  7. Tóth Z, Szörényi T, Tóth AL. Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning. Appl Surf Sci. 1993;69:317–20.

    Article  Google Scholar 

  8. Bohandy J, Kim BF, Adrian FJ. Metal deposition from a supported metal film using an excimer laser. J Appl Phys. 1986;60:1538.

    Article  CAS  Google Scholar 

  9. Chrisey DB, Pique A, Modi R, Wu HD, Auyeung RCY, Young HD. Direct writing of conformal mesoscopic electronic devices by MAPLE DW. Appl Surf Sci. 2000;168:345–52.

    Article  CAS  Google Scholar 

  10. Chrisey DB, Pique A, Fitz-Gerald J, Auyeung RCY, McGill RA, Wu HD, Duignan M. New approach to laser direct writing active and passive mesoscopic circuit elements. Appl Surf Sci. 2000;154–155:593–600.

    Article  Google Scholar 

  11. Fardel R, Nagel M, Nüesch F, Lippert T, Wokaun A. Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J Phys Chem C. 2010;114:5617–36.

    Article  CAS  Google Scholar 

  12. Choi MC, Kimb Y, Ha CS. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci. 2008;33:581–630.

    Article  CAS  Google Scholar 

  13. Barron JA, Wu P, Laduceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139–47.

    Article  CAS  Google Scholar 

  14. Dinca V, Farsari M, Kafetzopoulos D, Popescu A, Dinescu M, Fotakis C. Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers. Thin Solid Films. 2008;516:6504–11.

    Article  CAS  Google Scholar 

  15. Genov S, Riester D, Hirth T, Tovar G, Borchers K, Weber A. Preparation and characterisation of dry thin native protein trehalose films on titanium-coated cyclo-olefin polymer (COP) foil generated by spin-coating/drying process and applied for protein transfer by laser-induced-forward transfer (LIFT). Chem Eng Process. 2011;50:558–64.

    Article  CAS  Google Scholar 

  16. Kononenko V, Nagovitsyn IA, Chudinova GK, Mihailescu IN. Application of clean laser transfer for porphyrin micropatterning. Appl Surf Sci. 2010;256:2803–8.

    Article  CAS  Google Scholar 

  17. Karaiskou A, Zergioti I, Fotakis C, Kapsetaki M, Kafetzopoulos D. Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process. Appl Surf Sci. 2003;208–209:245–9.

    Article  Google Scholar 

  18. Fernandez-Pradas JM, Colina M, Serra P, Dominguez J, Morenza JL. Laser-induced forward transfer of biomolecules. Thin Solid Films. 2004;453–454:27–30.

    Article  Google Scholar 

  19. Zergioti I, Karaiskou A, Papazoglou DG, Fotakis C, Kapsetaki M, Kafetzopoulos D. Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials. Appl Surf Sci. 2005;247:584–9.

    Article  CAS  Google Scholar 

  20. Hopp B, Smausz T, Antal Z, Kresz N, Bor Z, Chrisey DB. Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia). J Appl Phys. 2004;96(6):3478–81.

    Article  CAS  Google Scholar 

  21. Hopp B, Smausz T, Barna N, Vass C, Antal Z, Kredics L, Chrisey DB. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia. J Phys D Appl Phys. 2005;38:833–7.

    Article  CAS  Google Scholar 

  22. Ringeisen BR, Chrisey DB, Young HD, Modi R, Bucaro M, Jones-Meehan J, Spargo BJ. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials. 2002;23:161–6.

    Article  CAS  Google Scholar 

  23. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication. 2010;2:032001.

    Article  Google Scholar 

  24. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494–500.

    Article  CAS  Google Scholar 

  25. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–6.

    Article  CAS  Google Scholar 

  26. Klini A, Lukakos PA, Gray D, Manousaki A, Fotakis C. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt Express. 2008;16:11300.

    Article  CAS  Google Scholar 

  27. Papadopoulou EL, Axente E, Magoulakis E, Fotakis C, Loukakos PA. Laser induced forward transfer of metal oxides using femtosecond double pulses. Appl Surf Sci. 2010;257:508–11.

    Article  CAS  Google Scholar 

  28. Schiele NR, Koppes RA, Corr DT, Ellison KS, Thompson DM, Ligon LA, Lippert TKM, Chrisey DB. Laser direct writing of combinatorial libraries of idealized cellular constructs: biomedical applications. Appl Surf Sci. 2009;255:5444–7.

    Article  CAS  Google Scholar 

  29. Doraiswamy A, Narayan RJ, Lippert T, Urech L, Wokaun A, Nagel M, Hopp B, Dinescu M, Modi R, Auyeung RCY, Chrisey DB. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl Surf Sci. 2006;252:4743–7.

    Article  CAS  Google Scholar 

  30. Nagel M, Fardel R, Feurer P, Haberli M, Nuesch FA, Lippert T, Wokaun A. Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior. Appl Phys A. 2008;92:781–9.

    Article  CAS  Google Scholar 

  31. Smausz T, Hopp B, Kecskeméti G, Bor Z. Study on metal microparticle content of the material transferred with absorbing film assisted laser induced forward transfer when using silver absorbing layer. Appl Surf Sci. 2006;252(13):4738–42.

    Article  CAS  Google Scholar 

  32. Othon CM, Wu X, Anders JJ, Ringeisen BR. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater. 2008;3:034101.

    Article  Google Scholar 

  33. Kononenko TV, Alloncle AP, Konov VI, Sentis M. Shadowgraphic imaging of laser transfer driven by metal film blistering. Appl Phys A. 2011;102:49–54.

    Article  CAS  Google Scholar 

  34. Kononenko TV, Nagovitsyn IA, Chudinova GK, Mihailescu IN. Clean, cold, and liquid-free laser transfer of biomaterials. Laser Phys. 2011;21(4):823–9.

    Article  CAS  Google Scholar 

  35. Kononenko TV, Alloncle AP, Konov VI, Sentis M. Laser transfer of diamond nanopowder induced by metal film blistering. Appl Phys A. 2009;94:531–6.

    Article  CAS  Google Scholar 

  36. Wang W, Huang Y, Grujicic M, Chrisey DB. Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng. 2008;130:021012.

    Article  Google Scholar 

  37. Wang W, Li G, Huang Y. Modeling of bubble expansion-induced cell mechanical profile in laser-assisted cell direct writing. J Manuf Sci Eng. 2009;131:051013.

    Article  Google Scholar 

  38. Brunetaud JM, Mordon S, Desmettere T, Beacco C. Les applications thérapeutiques des lasers. In: Fabre C, Pocholle JP, editors. Les lasers et leurs applications scientifiques et médicales. Les Ulis: EDP Sciences; 1996–2002.

  39. Tanzer ML. Current concepts of extracellular matrix. J Orthop Sci. 2006;11(3):326–31.

    Article  Google Scholar 

  40. Labat-Robert J, Bihari-Varga M, Roberts L. Extracellular matrix. FEBS Lett. 1990;268:386–93.

    Article  CAS  Google Scholar 

  41. Hay ED. Extracellular matrix. J Cell Biol. 1981;91(3):205s–23s.

    Article  CAS  Google Scholar 

  42. Grinnell F, Feld MK. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem. 1982;257:4888–93.

    CAS  Google Scholar 

  43. McClary KB, Ugarova T, Grainger DW. Modulating fibroblast adhesion, spreading and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res. 2000;50:428–39.

    Article  CAS  Google Scholar 

  44. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A. 2003;66(2):247–59.

    Article  Google Scholar 

  45. DiMilla PA, Stone JA, Quinn JA, Albeda SM, Lauffenburger DA. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at intermediate attachment strength. J Cell Biol. 1993;122(3):729–37.

    Article  CAS  Google Scholar 

  46. Garcia AJ, Vega MD, Boettinger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell. 1999;10:785–98.

    CAS  Google Scholar 

  47. Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res. 2000;49(3):362–8.

    Article  CAS  Google Scholar 

  48. Iuliano DJ, Saavedra SS, Truskey GA. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J Biomed Mater Res. 1993;27(8):1103–13.

    Article  CAS  Google Scholar 

  49. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–99.

    Article  CAS  Google Scholar 

  50. Al-Jallad HF, Nakano Y, Chen JLY, McMillan E, Lefebvre C, Kaartinen MT. Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures. Matrix Biol. 2006;25:135–48.

    Article  CAS  Google Scholar 

  51. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP. Fibrillin assembly requires fibronectin. Mol Biol Cell. 2009;20:846–56.

    Article  CAS  Google Scholar 

  52. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  Google Scholar 

  53. Poulouin L, Gallet O, Rouahi M, Imhoff JM. Plasma fibronectin: three steps to purification and stability. Prot Expr Purif. 1999;17:146–52.

    Article  CAS  Google Scholar 

  54. Grigorescu S, Carrado A, Ulhaq C, Faerber J, Ristoscu C, Dorcioman G, Axente E, Werckmann J, Mihailescu IN. Study of the gradual interface between hydroxyapatite thin films PLD grown onto Ti-controlled sublayers. Appl Surf Sci. 2007;254(4):1150–4.

    Article  CAS  Google Scholar 

  55. Grigorescu S. Etude des couches nano-structurées obtenues par ablation laser pour les implants biomimétiques avancés. PhD thesis 2010, Université de Strasbourg.

  56. Guillemot F, Prima F, Tokarev VN, Belin C, Porté-Durrieu MC, Gloriant T, Baquey Ch, Lazare S. Ultraviolet laser surface treatment for biomedical applications of β titanium alloys: morphological and structural characterization. Appl Phys A. 2003;77:899–904.

    Article  CAS  Google Scholar 

  57. Pauthe E, Pelta J, Patel S, Lairez D, Goubard F. Temperature-induced β-aggregation of fibronectin in aqueous solution. Biochim Biophys Acta. 2002;1597:12–21.

    Article  CAS  Google Scholar 

  58. Baujard-Lamotte L, Noinville S, Goubard F, Marque P, Pauthe E. Kinetics of conformational changes of fibronectin adsorbed onto model surfaces. Colloid Surf B: Biointerfaces. 2008;63:129–37.

    Article  CAS  Google Scholar 

  59. Young D, Auyeung RCY, Pique A, Chrisey DB, Dlott DD. Time resolved optical microscopy of a laser-based forward transfer process. Appl Phys Lett. 2001;78:3169–71.

    Article  CAS  Google Scholar 

  60. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.

    Article  CAS  Google Scholar 

  61. Ingham KC, Brew SA, Novokhatny VV. Influence of carbohydrate on structure, stability, and function of gelatin-binding fragments of fibronectin. Arch Biochem Biophys. 1995;316(1):235–40.

    Article  CAS  Google Scholar 

  62. Matsuura H, Greene T, Hakomori S. An alpha-N-acetylgalactosaminylation at the threonine residue of a defined peptide sequence creates the oncofetal peptide epitope in human fibronectin. J Biol Chem. 1989;264(18):10472–6.

    CAS  Google Scholar 

  63. Jones GE, Arumugham RG, Tanzer ML. Fibronectin glycosylation modulates fibroblast adhesion and spreading. J Cell Biol. 1986;103:1663–70.

    Article  CAS  Google Scholar 

  64. Albert O, Roger S, Glinec Y, Loulergue JC, Etchepare J, Boulmer-Leborgne C, Perrière J, Million E. Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl Phys A. 2003;76:319–23.

    Article  CAS  Google Scholar 

  65. Guillemot F, Prima F, Tokarev VN, Belin C, Porté-Durrieu MC, Gloriant T, Baquey Ch, Lazare S. Single-pulse KrF laser ablation and nanopatterning in vacuum of β-titanium alloys used in biomedical applications. Appl Phys A. 2004;79:811–3.

    Article  CAS  Google Scholar 

  66. Hermann J, Boulmer-Leborgne C, Hong D. Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption. J Appl Phys. 1998;83(2):691–6.

    Article  CAS  Google Scholar 

  67. Lide DR, editor. Handbook of chemistry and physics. 71st ed. Boca Raton: CRC; 1990.

    Google Scholar 

  68. Sherratt MJ, Bayley CP, Reilly SM, Gibbs NK, Griffiths CEM, Watson REB. Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. J Pathol. 2010;222(1):32–40.

    CAS  Google Scholar 

  69. Bovatsek J, Tamhankar A, Patel RS, Bulgakova NM, Bonse J. Thin film removal mechanisms in ns-laser processing of photovoltaic materials. Thin Solid Films. 2010;518:2897–904.

    Article  CAS  Google Scholar 

  70. Tsai WB, Ting YC, Yang JY, Lai JY, Liu HL. Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates. J Mater Sci Mater Med. 2009;20:1367–78.

    Article  CAS  Google Scholar 

  71. Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci. 2010;123:4201–13.

    Article  Google Scholar 

  72. Fink J, Thery M, Azioune A, Dupont R, Chatelain F, Bornensa M, Piel M. Comparative study and improvement of current cell micro-patterning techniques. Lab Chip. 2007;7:672–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the support of this work by Brancusi Programs n°14775SL (2006–2008) and n°25392UD (2011–2012). Romanian authors also acknowledge the partially funding support of the PCCA 153/02.07.2012 national project. We also thank Pr. Carmen Ristoscu and Pr. Emmanuel Pauthe for their valuable help, Pr. Patrick DiMartino for providing the lectins, Dr. Charlotte Vendrely and Dr. Damien Seyer for the useful explanations concerning the ATR-FTIR investigations, Dr. George Stan for the XRR Ti film thickness measurements and Dr. Rumeiza Bascetin for the useful discussions on fibronectin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Grigorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorescu, S., Hindié, M., Axente, E. et al. Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications. J Mater Sci: Mater Med 24, 1809–1821 (2013). https://doi.org/10.1007/s10856-013-4927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4927-0

Keywords

Navigation