Skip to main content
Log in

Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Morphine-loaded poly(l-lactide)-poly(ethylene glycol)-poly(l-lactide) (PLLA-PEG-PLLA) microparticles were prepared using solution enhanced dispersion by supercritical CO2 (SEDS). The effects of process variables on the morphology, particles size, drug loading (DL), encapsulation efficiency and release properties of the microparticles were investigated. All particles showed spherical or ellipsoidal shape with the mean diameter of 2.04–5.73 μm. The highest DL of 17.92 % was obtained when the dosage ratio of morphine to PLLA-PEG-PLLA reached 1:5, and the encapsulation efficiency can be as high as 87.31 % under appropriate conditions. Morphine-loaded PLLA-PEG-PLLA microparticles displayed short-term release with burst release followed by sustained release within days or long-term release lasted for weeks. The degradation test of the particles showed that the degradation rate of PLLA-PEG-PLLA microparticles was faster than that of PLLA microparticles. The results collectively suggest that PLLA-PEG-PLLA can be a promising candidate polymer for the controlled release system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agnihotri SA, Aminabhavi TM. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm. 2006;324:103–15.

    Article  CAS  Google Scholar 

  2. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17:93–102.

    Article  CAS  Google Scholar 

  3. Kawashima Y, York P. Drug delivery applications of supercritical fluid technology. Adv Drug Del Rev. 2008;60:297–8.

    Article  CAS  Google Scholar 

  4. Kang Y, Yang C, Ouyang P, Yin G, Huang Z, Yao Y, Liao X. The preparation of BSA-PLLA microparticles in a batch supercritical anti-solvent process. Carbohydr Polym. 2009;77:244–9.

    Article  CAS  Google Scholar 

  5. Chen AZ, Li Y, Chau FT, Lau TY, Hu JY, Zhao Z, Mok DKw. Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO2 process. Acta Biomater. 2009;5:2913–9.

    Article  CAS  Google Scholar 

  6. Shekunova YB, Baldygab J, York P. Particle formation by mixing with supercritical antisolvent at high Reynolds numbers. Chem Eng Sci. 2001;56:2421–33.

    Article  Google Scholar 

  7. Bristow S, Shekunov T, Shekunov BY, York P. Analysis of the supersaturation and precipitation process with supercritical CO2. J Supercrit Fluids. 2001;21:257–71.

    Article  CAS  Google Scholar 

  8. Vert M, Li S, Garreau H. More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release. 1991;16:15–26.

    Article  CAS  Google Scholar 

  9. Mothé CG, Drumond WS, Wang SH. Phase behavior of biodegradable amphiphilic poly(l, l-lactide)-b-poly(ethylene glycol)-b-poly(l, l-lactide). Thermochim Acta. 2006;445:61–6.

    Article  Google Scholar 

  10. Dorati R, Genta I, Colonna C, Modena T, Pavanetto F, Perugini P, Conti B. Investigation of the degradation behaviour of poly(ethylene glycol-co-d, l-lactide) copolymer. Polym Degrad Stab. 2007;92:1660–8.

    Article  CAS  Google Scholar 

  11. Zhou S, Deng X. In vitro degradation characteristics of poly-dl-lactide–poly(ethylene glycol) microspheres containing human serum albumin. React Funct Polym. 2002;51:93–100.

    Article  CAS  Google Scholar 

  12. Park SJ, Kim SH. Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique. J Colloid Interface Sci. 2004;271:336–41.

    Article  CAS  Google Scholar 

  13. Duvvuri S, Janoria KG, Mitra AK. Development of a novel formulation containing poly(d, l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J Control Release. 2005;108:282–93.

    Article  CAS  Google Scholar 

  14. Hiemstra C, Zhong ZY, Van Tomme SR, Hennink WE, Dijkstra PJ, Feijen J. Protein release from injectable stereocomplexed hydrogels based on PEG-PDLA and PEG-PLLA star block copolymers. J Control Release. 2006;116:e19–21.

    Article  CAS  Google Scholar 

  15. Venkatraman SS, Jie P, Min F, Freddy BYC, Leong-Huat G. Micelle-like nanoparticles of PLA-PEG-PLA triblock copolymer as chemotherapeutic carrier. Int J Pharm. 2005;298:219–32.

    Article  CAS  Google Scholar 

  16. Andersen G, Christrup L, Sjøgren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage. 2003;25:74–91.

    Article  CAS  Google Scholar 

  17. Polard E, Le Corre P, Chevanne F, Le Verge R. In vitro and in vivo evaluation of polylactide and polylactide-co-glycolide microspheres of morphine for site-specific delivery. Int J Pharm. 1996;134:37–46.

    Article  CAS  Google Scholar 

  18. Moolenaar F, Meyler P, Frijlink E, Jauw TH, Visser J, Proost H. Rectal absorption of morphine from controlled release suppositories. Int J Pharm. 1995;114:117–20.

    Article  CAS  Google Scholar 

  19. Eliot L, Butler J, Devane J, Loewen G. Pharmacokinetic evaluation of a sprinkle-dose regimen of a once-daily, extended-release morphine formulation. Clin Ther. 2002;24:260–8.

    Article  CAS  Google Scholar 

  20. Portenoy RK, Sciberras A, Eliot L, Loewen G, Butler J, Devane J. Steady-state pharmacokinetic comparison of a new, extended-release, once-daily morphine formulation, Avinza™, and a twice-daily controlled-release morphine formulation in patients with chronic moderate-to-severe pain. J Pain Symptom Manage. 2002;23:292–300.

    Article  CAS  Google Scholar 

  21. Alvarez-Fuentes J, Fernández-Arévalo M, Holgado MA, Caraballo I, Rabasco AM, Micó JA, Rojas O, Ortega-Alvaro A. Preclinical study of a controlled release oral morphine system in rats. Int J Pharm. 1996;139:237–41.

    Article  CAS  Google Scholar 

  22. Morales ME, Gallardo Lara V, Calpena AC, Doménech J, Ruiz MA. Comparative study of morphine diffusion from sustained release polymeric suspensions. J Control Release. 2004;95:75–81.

    Article  CAS  Google Scholar 

  23. Kang Y, Wu J, Yin G, Huang Z, Liao X, Yao Y, Ouyang P, Wang H, Yang Q. Characterization and biological evaluation of paclitaxel-loaded poly(l-lactic acid) microparticles prepared by supercritical CO2. Langmuir. 2008;24:7432–41.

    Article  CAS  Google Scholar 

  24. Holgado MA, Iruin A, Alvarez-Fuentes J, Fernández-Arévalo M. Development and in vitro evaluation of a controlled release formulation to produce wide dose interval morphine tablets. Eur J Pharm Biopharm. 2008;70:544–9.

    Article  CAS  Google Scholar 

  25. Tozuka Y, Miyazaki Y, Takeuchi H. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int J Pharm. 2010;386:243–8.

    Article  CAS  Google Scholar 

  26. Marra F, De Marco I, Reverchon E. Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chem Eng Sci. 2012;71:39–45.

    Article  CAS  Google Scholar 

  27. Reverchon EM, DE Marco L. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem Eng J. 2011;169:358–70.

    Article  CAS  Google Scholar 

  28. Reverchon E, Della Porta G, Sannino D, Ciambelli P. Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor. Powder Technol. 1999;102:127–34.

    Article  CAS  Google Scholar 

  29. Yang YY, Wan JP, Chung TS, Pallathadka PK, Ng S, Heller J. POE-PEG-POE triblock copolymeric microspheres containing protein: I Preparation and characterization. J Control Release. 2001;75:115–28.

    Article  CAS  Google Scholar 

  30. Franceschi E, De Cesaro AM, Feiten M, Ferreira SRS, Dariva C, Kunita MH, Rubira AF, Muniz EC, Corazza ML, Oliveira JV. Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2. J Supercrit Fluids. 2008;47:259–69.

    Article  CAS  Google Scholar 

  31. Chen AZ, Pu XM, Kang YQ, Liao L, Yao YD, Yin GF. Study of poly(l-lactide) microparticles based on supercritical CO2. J Mater Sci Mater Med. 2007;18:2339–45.

    Article  CAS  Google Scholar 

  32. Boutin O, Badens E, Carretier E, Charbit G. Co-precipitation of a herbicide and biodegradable materials by the supercritical anti-solvent technique. J Supercrit Fluids. 2004;31:89–99.

    Article  CAS  Google Scholar 

  33. Moshashaée S, Bisrat M, Forbes RT, Nyqvist H, York P. Supercritical fluid processing of proteins: I: lysozyme precipitation from organic solution. Eur J Pharm Sci. 2000;11:239–45.

    Article  Google Scholar 

  34. Alnajjar AO, El-Zaria ME. Synthesis and characterization of novel azo-morphine derivatives for possible use in abused drugs analysis. Eur J Med Chem. 2008;43:357–63.

    Article  CAS  Google Scholar 

  35. Sui X, Wei W, Yang L, Zu Y, Zhao C, Zhang L, Yang F, Zhang Z. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm. 2012;423:471–9.

    Article  CAS  Google Scholar 

  36. Batycky RP, Hanes J, Langer R, Edwards DA. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J Pharm Sci. 1997;86:1464–77.

    Article  CAS  Google Scholar 

  37. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36.

    Article  CAS  Google Scholar 

  38. Mallardé D, Boutignon F, Moine F, Barré E, David S, Touchet H, Ferruti P, Deghenghi R. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Int J Pharm. 2003;261:69–80.

    Article  Google Scholar 

  39. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  40. Zhao C, Kim SW, Yang DY, Kim JJ, Park NC, Lee SW, Paick JS, Ahn TY, Min KS, Park K, Park JK. Efficacy and safety of once-daily dosing of udenafil in the treatment of erectile dysfunction: results of a multicenter, randomized, double-blind, Placebo-Controlled Trial. Eur Urol. 2011;60:380–7.

    Article  CAS  Google Scholar 

  41. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V. Polymer degradation and in vitro release of a model protein from poly(d, l-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003;92:173–87.

    Article  CAS  Google Scholar 

  42. Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med. 1990;1:198–206.

    Article  CAS  Google Scholar 

  43. Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials. 1995;16:1123–30.

    Article  CAS  Google Scholar 

  44. Blanco MD, Sastre RL, Teijón C, Olmo R, Teijón JM. Degradation behaviour of microspheres prepared by spray-drying poly(d, l-lactide) and poly(d, l-lactide-co-glycolide) polymers. Int J Pharm. 2006;326:139–47.

    Article  CAS  Google Scholar 

  45. Gopferich A, Langer R. Modeling of polymer erosion. Macromolecules. 1993;26:4105–12.

    Article  CAS  Google Scholar 

  46. Youxin L, Volland C, Kissel T. In-vitro degradation and bovine serum albumin release of the ABA triblock copolymers consisting of poly (l(+) lactic acid), or poly(l(+) lactic acid-co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J Control Release. 1994;32:121–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (project No. 51173120, 51273122 and 51202151). Authors are very much grateful to the National Engineering Research Center for Biomaterials, Sichuan University for the assistance with the microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Liao or Jianwen Gu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Yin, G., Liao, X. et al. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids. J Mater Sci: Mater Med 24, 1693–1705 (2013). https://doi.org/10.1007/s10856-013-4926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4926-1

Keywords

Navigation