Skip to main content

Advertisement

Log in

Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel tertiary amine containing urethane dimethacrylate monomer UDMTA was synthesized with the aim of replacing Bis-GMA as one component of dental restorative materials. The structure of UDMTA was confirmed by FT-IR and 1H-NMR spectra. UDMTA was incorporated into Bis-GMA/TEGDMA (50 wt%/50 wt%) resin system to replace Bis-GMA partly and totally. Double bond conversion, polymerization volumetric shrinkage, water sorption and solubility, flexural strength and modulus of UDMTA containing resin formulations were studied with neat Bis-GMA/TEGDMA resin formulation as a reference. Results showed that UDMTA could be used as a coinitiator in photocurable dental resin, UDMTA containing resin had higher double bond conversion and lower polymerization shrinkage than that of Bis-GMA/TEGDMA resin, and the UDMTA containing copolymer had higher flexural strength and flexural modulus than Bis-GMA/TEGDMA copolymer. When UDMTA was used to replace more than 25 wt% of Bis-GMA, the obtained copolymer had higher water sorption and solubility. The optimized resin composition is by replacing 25 wt% of Bis-GMA in Bis-GMA/TEGDMA (50/50 by wt%), for the prepared resin had the best comprehensive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mater. 1995;11:338–42.

    Article  CAS  Google Scholar 

  2. Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater. 2005;21:421–8.

    Article  CAS  Google Scholar 

  3. Viljanen EK, Lassila LV, Skrifvars M, Vallittu PK. Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: design of experiments and statistical screening. Dent Mater. 2005;21:172–7.

    Article  CAS  Google Scholar 

  4. Viljanen EK, Skrifvars M, Vallittu PK. Dendritic copolymers and particulate filler composites for dental applications: degree of conversion and thermal properties. Dent Mater. 2007;23:1420–7.

    Article  CAS  Google Scholar 

  5. He J, Luo Y, Liu F, Jia D. Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials. J Biomater Appl. 2010;25:235–49.

    Article  CAS  Google Scholar 

  6. Wang T, Nikaido T, Nakabayashi N. Photocure bonding agent containing phosphoric methacrylate. Dent Mater. 1991;7:59–62.

    Article  CAS  Google Scholar 

  7. Munksgaard EC. Permeability of protective gloves by HEMA and TEGDMA in the presence of solvents. Acta Odontol Scand. 2000;58:57–62.

    Article  CAS  Google Scholar 

  8. Liu F, He JW, Lin ZM, Ling JQ, Jia DM. Synthesis and characterization of dimethacrylate monomer with high molecular weight for root canal filling materials. Molecules. 2006;11:953–8.

    Article  CAS  Google Scholar 

  9. Lin ZM, Ling JQ, Fang JY, Liu F, He JW. Physicochemical properties, sealing ability, bonding strength and cytotoxicity of a new dimethacrylate-based root canal sealer. J Formos Med Assoc. 2010;109:819–27.

    Article  CAS  Google Scholar 

  10. He J, Luo Y, Liu F, Jia D. Synthesis, characterization and photopolymerization of a new dimethacrylate monomer based (alpha-methyl-benzylidene)-bisphenol used as root canal sealer. J Biomater Sci Polym Ed. 2010;21:1191–205.

    Article  CAS  Google Scholar 

  11. Kim YK, Grandini S, Ames JM, Gu LS, Kim SK, Pashley DH, et al. Critical review on methacrylate resin-based root canal sealer. J Endod. 2010;36:383–99.

    Article  Google Scholar 

  12. Chung CM, Kim MS, Kim JG, Jang DO. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J Biomed Mater Res. 2002;62:622–7.

    Article  CAS  Google Scholar 

  13. Barszczewska-Rybarek IM. Structure–property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent Mater. 2009;25:1082–9.

    Article  CAS  Google Scholar 

  14. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci. 2001;26:535–76.

    Article  CAS  Google Scholar 

  15. Ellakwa A, Cho N, Lee IB. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater. 2007;23:1229–35.

    Article  CAS  Google Scholar 

  16. Nie J, Wu G. 3-diethylamino-propionate methacrylate as a polymerization amine coinitiator for dental application. Dent Mater. 2007;23:623–9.

    Article  Google Scholar 

  17. Viljanen EK, Skrifvars M, Vallittu PK. Dendrimer/methyl methacrylate copolymers: residual methyl methacrylate and degree of conversion. J Biomater Sci Polym Ed. 2005;16:1219–31.

    Article  CAS  Google Scholar 

  18. Viljanen EK, Langer S, Skrifvars M, Vallittu PK. Analysis of residual monomers by HPLC and HS-GC/MS. Dent Mater. 2006;22:845–51.

    Article  CAS  Google Scholar 

  19. Sideridou I, Achilias DS, Spyroudi C, Karabela M. Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA. Biomaterials. 2004;25:367–76.

    Article  CAS  Google Scholar 

  20. Khatri CA, Stansbury JW, Schultheisz CR, Antonucci JM. Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA. Dent Mater. 2003;19:584–8.

    Article  CAS  Google Scholar 

  21. Kim JG, Chung CM. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials. 2003;24:3845–51.

    Article  CAS  Google Scholar 

  22. Kurata S, Yamazaki N. Synthesis of dimethacryloxy ethyl-1,1,6,6-tetrahydro- perflourohexamethylene-1,6-dicarbamate as dental base monomers and the mechanical properties of the copolymers of the monomer and methyl methacrylate. Dent Mater J. 2011;30:103–8.

    Article  CAS  Google Scholar 

  23. Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, et al. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–9.

    Article  CAS  Google Scholar 

  24. International Standardization Organization ISO 10477 1992(E). Dentistry-polymer based crown and bridge materials. Geneva, Switzerland: International Standardization Organization; 1992.

  25. Xu H, Wu G, Nie J. Synthesis and photopolymerization characteristics of amine coinitiator. J Photochem Photobiol, A. 2008;193:254–9.

    Article  CAS  Google Scholar 

  26. Schneider LFJ, Cavalcante LM, Consani S, Ferracane JL. Effect of co-initiator ratio on the polymer properties of experimental resin composites formulated with camphorquinone and phenyl-propanedione. Dent Mater. 2009;25:369–75.

    Article  CAS  Google Scholar 

  27. He J, Liu F, Luo Y, Jia D. Synthesis and characterization of a dimethacrylates monomer with low shrinkage and water sorption for dental application. J Appl Polym Sci. 2012;125:114–20.

    Article  CAS  Google Scholar 

  28. Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing Bis-GMA-based methacrylate resins. Biomaterials. 1993;14:871–5.

    Article  CAS  Google Scholar 

  29. Patel MP, Braden M, Davy KWM. Polymerization shrinkage of methacrylate esters. Biomaterials. 1987;8:53–6.

    Article  CAS  Google Scholar 

  30. Magali D, Belphine TB, Jacques D, Gäetane L. Volume contaction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater. 2006;22:359–65.

    Article  Google Scholar 

  31. Ge J, Trujillo M, Stansbury J. Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater. 2005;21:1163–9.

    Article  CAS  Google Scholar 

  32. Stansbury JW, Trujillo-Lemon M, Lu H, Ding X, Lin Y, Ge J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater. 2005;21:56–67.

    Article  CAS  Google Scholar 

  33. Sideridou ID, Karabela MM, Vouvoudi EC. Dynamic thermomechanical properties and sorption characteristics of two commercial light cured dental resin composites. Dent Mater. 2008;24:737–43.

    Article  CAS  Google Scholar 

  34. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater. 1990;6:282–7.

    Article  CAS  Google Scholar 

  35. Soderholm KJ, Zigan M, Ragan M, Fischlshweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63:1248–54.

    Article  CAS  Google Scholar 

  36. Costella AM, Trochmann JL, Oliveira WS. Water sorption and diffusion coefficient through an experimental dental resin. J Mater Sci Mater Med. 2010;21:67–72.

    Article  CAS  Google Scholar 

  37. Puffer R, Sebenda J. On the structure and properties of polyamides XXVII. The mechanism of water sorption in polyamide. J Polym Sci C. 1967;16:79.

    Google Scholar 

  38. Lastumäki T, Lassila L, Vallittu PK. Flexural properties of bulk fiber-reinforced composite DC-Tell used in fixed partial dentures. Int J Prosthodont. 2001;14:22–6.

    Google Scholar 

  39. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003;24:655–65.

    Article  CAS  Google Scholar 

  40. Chang MC, Lin LD, Chuang FH, Chan CP, Wang TM, Lee JJ, et al. Carboxylesterase expression in human dental pulp cells: role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomater. 2012;8:1380–7.

    Article  CAS  Google Scholar 

  41. Hansel C, Leyhause G, Mai UE, Geurtsen W. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res. 1998;77:60–7.

    Article  CAS  Google Scholar 

  42. Ferracane JL. Cytotoxicity of components of resins and other dental restorative materials. J Oral Rehabil. 1994;21:453–62.

    Article  Google Scholar 

  43. Asmussen E, Peutzfeldt A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998;14:51–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Fundamental Research Funds for the Central Universities (2012ZB0004), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Liu, F., He, J. et al. Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin. J Mater Sci: Mater Med 24, 1595–1603 (2013). https://doi.org/10.1007/s10856-013-4897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4897-2

Keywords

Navigation