Evaluation of early stage human bone marrow stromal proliferation, cell migration and osteogenic differentiation on μ-MIM structured stainless steel surfaces

  • Malak Bitar
  • Fausta Benini
  • Claudia Brose
  • Vera Friederici
  • Philipp Imgrund
  • Arie BruininkEmail author


It is well established that surface topography greatly affect cell—surface interactions. In a recent study we showed that microstructured stainless steel surfaces characterized by the presence of defined hexagonally arranged hemisphere-like structures significantly affected cell architecture (shape and focal adhesion size) of primary human bone mesenchymal stromal cells. This study aimed at further investigating the influence these microstructures (microcline protruding hemispheres) on critical aspects of cell behaviour namely; proliferation, migration and osteogenic differentiation. As with previously reported data, we used primary human bone mesenchymal stromal cells to investigate such effects at an early stage in vitro. Cells of different patients were utilised for cell migration studies. Our data showed that an increase in cell proliferation was exhibited as a function of surface topography (hemispheres). Cell migration velocity also varied as a function of surface topography on patient specific basis and seems to relate to the differentiated state of the seeded cell population (as demonstrated by bALP positivity). Osteogenic differentiation, however, did not exhibit significant variations (both up and down-regulation) as a function of both surface topography and time in culture.


Osteogenic Differentiation Migration Velocity Human Bone Marrow Stromal Cell Cell Trajectory Metal Injection Moulding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the generous support of the Volkswagen Foundation (contract nr. 182–296) in Germany.We also thank Kantonsspital St. Gallen (CH) for providing the human tissue samples.

Supplementary material

10856_2013_4876_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 43 kb)


  1. 1.
    Disegi JA, Eschbach L. Stainless steel in bone surgery. Inj Suppl. 2000;4(31):2.CrossRefGoogle Scholar
  2. 2.
    Lee M-H, Park I-S, Min K-S, et al. Evaluation of in vitro and in vivo tests for surface–modified titanium by H2SO4 and H2O2 treatment. Met Mater Int. 2007;13:109.CrossRefGoogle Scholar
  3. 3.
    Shannon JM, Pitelka DR. The influence of cell shape on the induction of functional differentiation in mouse mammary cells in vitro. In Vitro. 1981;17:1016.CrossRefGoogle Scholar
  4. 4.
    Watt FM, Jordan PW. CH O’Neill cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci USA. 1988;85:5576.CrossRefGoogle Scholar
  5. 5.
    Boone C, De Clercq L, Grégoire F, Remacle C. The modulation of cell shape influences porcine preadipocyte differentiation. In Vitro Cell Dev Biol. 1999;35:61.CrossRefGoogle Scholar
  6. 6.
    Takagi M, Kitabayashi K, Koizumi S, et al. Correlation between cell morphology and aggrecan gene expression level during differentiation from mesenchymal stem cells to chondrocytes. Biotechnol Lett. 2008;30:1189.CrossRefGoogle Scholar
  7. 7.
    Unadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA. 2011;108:16565.CrossRefGoogle Scholar
  8. 8.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA. 2010;107:4872.CrossRefGoogle Scholar
  9. 9.
    Kaiser J-P, Bruinink A. Investigating cell-material interactions by monitoring and analysing cell migration. J Mater Sci Mated Med. 2004;15:429.CrossRefGoogle Scholar
  10. 10.
    Bruinink A, Wintermantel E. Grooves affect primary bone marrow but not osteoblastic MC3T3-E1 cell cultures. Biomaterials. 2001;22:2465.CrossRefGoogle Scholar
  11. 11.
    Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res. 2004;69A:462.CrossRefGoogle Scholar
  12. 12.
    Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P. Response of rat osteoblast-like cells to microstructured model surfaces in vitro. Biomaterials. 2003;24:649.CrossRefGoogle Scholar
  13. 13.
    Imgrund P, Bitar M, Friederici V, Bruinink A (2012) Scripta Materialia (in preparation).Google Scholar
  14. 14.
    Bitar M, Friederici V, Imgrund P, Brose C, Bruinink A. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features. Eur Cell Mater. 2012;23:333.Google Scholar
  15. 15.
    Born A-K, Rottmar M, Lischer S, Pleskova M, Bruinink A, Maniura-Weber K. Correlating cell architecture with osteogenesis: first steps towards live single cell monitoring. Eur Cell Mater. 2009;18:49.Google Scholar
  16. 16.
    Li F, Wang Q-M, Wang JH-C. Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton. 2008;65:332.CrossRefGoogle Scholar
  17. 17.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483.CrossRefGoogle Scholar
  18. 18.
    Lamers E, van Horssen R, te Riet J, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cell Mater. 2010;9:329.Google Scholar
  19. 19.
    Rodríguez Fernández JL, Geiger B, Salomon D, Ben-Ze’ev A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton. 1992;22:127.CrossRefGoogle Scholar
  20. 20.
    Imgrund P, Rota A, Simchi A. Microinjection moulding of 316L/17-4PH and 316L/Fe powders for fabrication of magnetic-nonmagnetic bimetals. J Mat Process Technol. 2008;200:259.CrossRefGoogle Scholar
  21. 21.
    Imgrund P, Schmidt H, Salk N, Bruinink A, Bitar M. Metal Powder Industries Federation. In: Lawcock R, Lawley A, McGeehan PJ (eds) Advances in Powder Metallurgy & Particulate Materials-2008. New Jersey, Washington DC, 2008.Google Scholar
  22. 22.
    Born A-K, Lischer S, Maniura-Weber K. Watching osteogenesis: life monitoring of osteogenic differentiation using an osteocalcin reporter. J Cell Biochem. 2012;113:313.CrossRefGoogle Scholar
  23. 23.
    Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem. 1995;270:9420.CrossRefGoogle Scholar
  24. 24.
    Zinger O, Zhao G, Schwartz Z, et al. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26:1837.CrossRefGoogle Scholar
  25. 25.
    Gu YX, Du J, Si MS, Mo JJ, Qiao SC, Lai HC. The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces. J Biomed Biomater Res A. 2013;101:748CrossRefGoogle Scholar
  26. 26.
    Lincks J, Boyan BD, Blanchard CR, et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19:2219.CrossRefGoogle Scholar
  27. 27.
    Rodríguez Fernández JL, Geiger B, Salomon D, Ben-Ze’ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol. 1993;122:1285.CrossRefGoogle Scholar
  28. 28.
    Nedeau AE, Bauer RJ, Gallagher K, Chen H, Liu ZJ, Velazquez OC. A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2008;314:2176.CrossRefGoogle Scholar
  29. 29.
    Aguilar-Vázquez R, Carballo-Molina OA, Collazo-Navarrete O, et al. Osteogenesis of human vascular endothelial cells in culture. Rev Invest Clin. 2008;60:496.Google Scholar
  30. 30.
    Shui C, Scutt AM. Mouse embryo-derived NIH3T3 fibroblasts adopt an osteoblast-like phenotype when treated with 1alpha,25-dihydroxyvitamin D(3) and dexamethasone in vitro. J Cell Physiol. 2002;193:164.CrossRefGoogle Scholar
  31. 31.
    Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater. 2011;7:1525.CrossRefGoogle Scholar
  32. 32.
    Leclerc N, Noh T, Khokhar A, Smith E, Frenkel B. Glucocorticoids inhibit osteocalcin transcription in osteoblasts by suppressing Egr2/Krox20-binding enhancer. Arthritis Rheum. 2005;52:929.CrossRefGoogle Scholar
  33. 33.
    Engel E, Martínez E, Mills CA, Funes M, Planell JA, Samitier J. Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates. Ann Anat. 2009;191:136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Malak Bitar
    • 1
    • 3
  • Fausta Benini
    • 1
  • Claudia Brose
    • 1
  • Vera Friederici
    • 2
  • Philipp Imgrund
    • 2
  • Arie Bruinink
    • 1
    Email author
  1. 1.Materials-Biology Interactions LabEMPASt. GallenSwitzerland
  2. 2.Fraunhofer Institute for Manufacturing and Advanced Materials (IFAM)BremenGermany
  3. 3.Technical Research and DevelopmentNovartis Pharma AGBaselSwitzerland

Personalised recommendations