Advertisement

Fibroblast growth on micro- and nanopatterned surfaces prepared by a novel sol–gel phase separation method

  • Paula ReemannEmail author
  • Triin Kangur
  • Martin Pook
  • Madis Paalo
  • Liis Nurmis
  • Ilmar Kink
  • Orm Porosaar
  • Külli Kingo
  • Eero Vasar
  • Sulev Kõks
  • Viljar Jaks
  • Martin Järvekülg
Article

Abstract

Physical characteristics of the growth substrate including nano- and microstructure play crucial role in determining the behaviour of the cells in a given biological context. To test the effect of varying the supporting surface structure on cell growth we applied a novel sol–gel phase separation-based method to prepare micro- and nanopatterned surfaces with round surface structure features. Variation in the size of structural elements was achieved by solvent variation and adjustment of sol concentration. Growth characteristics and morphology of primary human dermal fibroblasts were found to be significantly modulated by the microstructure of the substrate. The increase in the size of the structural elements, lead to increased inhibition of cell growth, altered morphology (increased cytoplasmic volume), enlarged cell shape, decrease in the number of filopodia) and enhancement of cell senescence. These effects are likely mediated by the decreased contact between the cell membrane and the growth substrate. However, in the case of large surface structural elements other factors like changes in the 3D topology of the cell’s cytoplasm might also play a role.

Keywords

Contact Angle Nanopatterned Surface Primary Human Dermal Fibroblast Water Droplet Contact Angle Olympus Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dr. Tõnu Järveots, Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, for use of his Critical point dryer and Jürgen Innos, Department of Physiology, University of Tartu, for language correction of this article. This study was financially supported by the funding from the Estonian Ministry of Education and Research targeted financing SF0180148s08, SF0180058s07 by the Estonian Science Foundation research grant funding ETF6576, and ETF7479, ETF8428, ETF8420, ETF8377, ETF8932, ETF9282, by EMBO Installation Grant, by the European Union through the European Regional Development Fund via Estonia–Latvia Program and Developing Estonian–Latvian Medical Area project and Centre of Excellence “Mesosystems: Theory and Applications” and by European Social Fund project Functional Materials and Processes 1.2.0401.09-0079.

References

  1. 1.
    Saal K, Tätte T, Järvekülg M, Reedo V, Lohmus A, Kink I. Micro- and nanoscale structures by sol–gel processing. Int J Mater Prod Technol. 2011;40:2–14.CrossRefGoogle Scholar
  2. 2.
    Dirè S, Tagliazucca V, Callone E, Quaranta A. Effect of functional groups on condensation and properties of sol–gel silica nanoparticles prepared by direct synthesis from organoalkoxysilanes. Mater Chem Phys. 2011;126:909–17.CrossRefGoogle Scholar
  3. 3.
    Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.CrossRefGoogle Scholar
  4. 4.
    Wheeldon I, Farhadi A, Bick AG, Jabbari E, Khademhosseini A. Nanoscale tissue engineering: spatial control over cell–materials interactions. Nanotechnology. 2011;22:212001.CrossRefGoogle Scholar
  5. 5.
    Choi CK, Breckenridge MT, Chen CS. Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol. 2010;20:705–14.CrossRefGoogle Scholar
  6. 6.
    Yang Y, Leong KW. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:478–95.CrossRefGoogle Scholar
  7. 7.
    Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine (Lond). 2011;6:157–81.CrossRefGoogle Scholar
  8. 8.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.CrossRefGoogle Scholar
  9. 9.
    Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.CrossRefGoogle Scholar
  10. 10.
    Tirrell M, Kokkoli E, Biesalski M. The role of surface science in bioengineered materials. Surf Sci. 2002;500:61–83.CrossRefGoogle Scholar
  11. 11.
    Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B. Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J. 2009;97:357–68.CrossRefGoogle Scholar
  12. 12.
    Poellmann MJ, Harrell PA, King WP, Wagoner Johnson AJ. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomater. 2010;6:3514–23.CrossRefGoogle Scholar
  13. 13.
    Dolatshahi-Pirouz A, Nikkhah M, Kolind K, Dokmeci MR, Khademhosseini A. Micro- and nanoengineering approaches to control stem cell–biomaterial interactions. J Funct Biomater. 2011;2:88–106.CrossRefGoogle Scholar
  14. 14.
    Smitha S, Shajesh P, Mukundan P, Warrier KGK. Sol–gel synthesis of biocompatible silica–chitosan hybrids and hydrophobic coatings. J Mater Res. 2008;23:2053–60.CrossRefGoogle Scholar
  15. 15.
    Lee J-H, Kim H-E, Shin K-H, Koh Y-H. Electrodeposition of biodegradable sol–gel derived silica onto nanoporous TiO2 surface formed on Ti substrate. Mater Lett. 2011;65:1519–21.CrossRefGoogle Scholar
  16. 16.
    Kajihara K, Hirano M, Hosono H. Sol–gel synthesis of monolithic silica gels and glasses from phase-separating tetraethoxysilane–water binary system. Chem Commun (Camb). 2009;2580–2. doi: 10.1039/B900887J.
  17. 17.
    Timusk M, Järvekülg M, Salundi A, Lõhmus R, Kink I, Saal K. Optical properties of high-performance liquid crystal–xerogel microcomposite electro-optical film. J Mater Res. 2012;27:1257–64.CrossRefGoogle Scholar
  18. 18.
    Nakanishi K, Tanaka N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res. 2007;40:863–73.CrossRefGoogle Scholar
  19. 19.
    Brown JM, Swindle EJ, Kushnir-Sukhov NM, Holian A, Metcalfe DD. Silica-directed mast cell activation is enhanced by scavenger receptors. Am J Respir Cell Mol Biol. 2007;36:43–52.CrossRefGoogle Scholar
  20. 20.
    Ferry VE, Verschuuren MA, Lare MC, Schropp RE, Atwater HA, Polman A. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett. 2011;11:4239–45.CrossRefGoogle Scholar
  21. 21.
    Bhushan B, Jung YC, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans A Math Phys Eng Sci. 2009;367:1631–72.CrossRefGoogle Scholar
  22. 22.
    Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.CrossRefGoogle Scholar
  23. 23.
    Belyantseva IA, Perrin BJ, Sonnemann KJ, Zhu M, Stepanyan R, McGee J, et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci U S A. 2009;106:9703–8.CrossRefGoogle Scholar
  24. 24.
    Dugina V, Zwaenepoel I, Gabbiani G, Clement S, Chaponnier C. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci. 2009;122:2980–8.CrossRefGoogle Scholar
  25. 25.
    Tsai IY, Kimura M, Stockton R, Green JA, Puig R, Jacobson B, et al. Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. J Biomed Mater Res A. 2004;71:462–9.CrossRefGoogle Scholar
  26. 26.
    Hamilton DW, Riehle MO, Monaghan W, Curtis AS. Articular chondrocyte passage number: influence on adhesion, migration, cytoskeletal organisation and phenotype in response to nano- and micro-metric topography. Cell Biol Int. 2005;29:408–21.CrossRefGoogle Scholar
  27. 27.
    Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4:1798–806.CrossRefGoogle Scholar
  28. 28.
    Stockton RA, Jacobson BS. Modulation of cell–substrate adhesion by arachidonic acid: lipoxygenase regulates cell spreading and ERK1/2-inducible cyclooxygenase regulates cell migration in NIH-3T3 fibroblasts. Mol Biol Cell. 2001;12:1937–56.Google Scholar
  29. 29.
    Khor HL, Kuan Y, Kukula H, Tamada K, Knoll W, Moeller M, et al. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells. Biomacromolecules. 2007;8:1530–40.CrossRefGoogle Scholar
  30. 30.
    Kill IR. Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci. 1996;109(Pt 6):1253–63.Google Scholar
  31. 31.
    Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–5.Google Scholar
  32. 32.
    Knuchel R, Hofstaedter F, Sutherland RM, Keng PC. Proliferation-associated antigens PCNA and Ki-67 in two- and three-dimensional experimental systems of human squamous epithelial carcinomas. Verh Dtsch Ges Pathol. 1990;74:275–8.Google Scholar
  33. 33.
    Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.CrossRefGoogle Scholar
  34. 34.
    Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11:642–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Paula Reemann
    • 1
    Email author
  • Triin Kangur
    • 2
  • Martin Pook
    • 3
  • Madis Paalo
    • 2
    • 4
  • Liis Nurmis
    • 2
  • Ilmar Kink
    • 2
    • 4
  • Orm Porosaar
    • 5
  • Külli Kingo
    • 6
    • 7
  • Eero Vasar
    • 1
    • 8
  • Sulev Kõks
    • 1
    • 8
    • 9
  • Viljar Jaks
    • 3
    • 10
    • 11
  • Martin Järvekülg
    • 2
    • 4
  1. 1.Department of PhysiologyUniversity of TartuTartuEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia
  3. 3.Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
  4. 4.Estonian Nanotechnology Competence CentreTartuEstonia
  5. 5.Department of Pediatric SurgeryTallinn Children’s HospitalTallinnEstonia
  6. 6.Clinic of DermatologyTartu University HospitalTartuEstonia
  7. 7.Department of DermatologyUniversity of TartuTartuEstonia
  8. 8.Centre of Translational MedicineUniversity of TartuTartuEstonia
  9. 9.Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
  10. 10.Estonian Competence Centre for Cancer ResearchTallinnEstonia
  11. 11.Department of Biosciences and Nutrition, Center for BiosciencesKarolinska InstitutetHuddingeSweden

Personalised recommendations