Skip to main content
Log in

Fibroblast growth on micro- and nanopatterned surfaces prepared by a novel sol–gel phase separation method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Physical characteristics of the growth substrate including nano- and microstructure play crucial role in determining the behaviour of the cells in a given biological context. To test the effect of varying the supporting surface structure on cell growth we applied a novel sol–gel phase separation-based method to prepare micro- and nanopatterned surfaces with round surface structure features. Variation in the size of structural elements was achieved by solvent variation and adjustment of sol concentration. Growth characteristics and morphology of primary human dermal fibroblasts were found to be significantly modulated by the microstructure of the substrate. The increase in the size of the structural elements, lead to increased inhibition of cell growth, altered morphology (increased cytoplasmic volume), enlarged cell shape, decrease in the number of filopodia) and enhancement of cell senescence. These effects are likely mediated by the decreased contact between the cell membrane and the growth substrate. However, in the case of large surface structural elements other factors like changes in the 3D topology of the cell’s cytoplasm might also play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saal K, Tätte T, Järvekülg M, Reedo V, Lohmus A, Kink I. Micro- and nanoscale structures by sol–gel processing. Int J Mater Prod Technol. 2011;40:2–14.

    Article  CAS  Google Scholar 

  2. Dirè S, Tagliazucca V, Callone E, Quaranta A. Effect of functional groups on condensation and properties of sol–gel silica nanoparticles prepared by direct synthesis from organoalkoxysilanes. Mater Chem Phys. 2011;126:909–17.

    Article  Google Scholar 

  3. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.

    Article  CAS  Google Scholar 

  4. Wheeldon I, Farhadi A, Bick AG, Jabbari E, Khademhosseini A. Nanoscale tissue engineering: spatial control over cell–materials interactions. Nanotechnology. 2011;22:212001.

    Article  Google Scholar 

  5. Choi CK, Breckenridge MT, Chen CS. Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol. 2010;20:705–14.

    Article  CAS  Google Scholar 

  6. Yang Y, Leong KW. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2:478–95.

    Article  CAS  Google Scholar 

  7. Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine (Lond). 2011;6:157–81.

    Article  CAS  Google Scholar 

  8. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  Google Scholar 

  9. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.

    Article  Google Scholar 

  10. Tirrell M, Kokkoli E, Biesalski M. The role of surface science in bioengineered materials. Surf Sci. 2002;500:61–83.

    Article  CAS  Google Scholar 

  11. Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B. Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J. 2009;97:357–68.

    Article  CAS  Google Scholar 

  12. Poellmann MJ, Harrell PA, King WP, Wagoner Johnson AJ. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomater. 2010;6:3514–23.

    Article  CAS  Google Scholar 

  13. Dolatshahi-Pirouz A, Nikkhah M, Kolind K, Dokmeci MR, Khademhosseini A. Micro- and nanoengineering approaches to control stem cell–biomaterial interactions. J Funct Biomater. 2011;2:88–106.

    Article  CAS  Google Scholar 

  14. Smitha S, Shajesh P, Mukundan P, Warrier KGK. Sol–gel synthesis of biocompatible silica–chitosan hybrids and hydrophobic coatings. J Mater Res. 2008;23:2053–60.

    Article  CAS  Google Scholar 

  15. Lee J-H, Kim H-E, Shin K-H, Koh Y-H. Electrodeposition of biodegradable sol–gel derived silica onto nanoporous TiO2 surface formed on Ti substrate. Mater Lett. 2011;65:1519–21.

    Article  CAS  Google Scholar 

  16. Kajihara K, Hirano M, Hosono H. Sol–gel synthesis of monolithic silica gels and glasses from phase-separating tetraethoxysilane–water binary system. Chem Commun (Camb). 2009;2580–2. doi:10.1039/B900887J.

  17. Timusk M, Järvekülg M, Salundi A, Lõhmus R, Kink I, Saal K. Optical properties of high-performance liquid crystal–xerogel microcomposite electro-optical film. J Mater Res. 2012;27:1257–64.

    Article  CAS  Google Scholar 

  18. Nakanishi K, Tanaka N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res. 2007;40:863–73.

    Article  CAS  Google Scholar 

  19. Brown JM, Swindle EJ, Kushnir-Sukhov NM, Holian A, Metcalfe DD. Silica-directed mast cell activation is enhanced by scavenger receptors. Am J Respir Cell Mol Biol. 2007;36:43–52.

    Article  CAS  Google Scholar 

  20. Ferry VE, Verschuuren MA, Lare MC, Schropp RE, Atwater HA, Polman A. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett. 2011;11:4239–45.

    Article  CAS  Google Scholar 

  21. Bhushan B, Jung YC, Koch K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans A Math Phys Eng Sci. 2009;367:1631–72.

    Article  CAS  Google Scholar 

  22. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.

    Article  CAS  Google Scholar 

  23. Belyantseva IA, Perrin BJ, Sonnemann KJ, Zhu M, Stepanyan R, McGee J, et al. Gamma-actin is required for cytoskeletal maintenance but not development. Proc Natl Acad Sci U S A. 2009;106:9703–8.

    Article  CAS  Google Scholar 

  24. Dugina V, Zwaenepoel I, Gabbiani G, Clement S, Chaponnier C. Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity. J Cell Sci. 2009;122:2980–8.

    Article  CAS  Google Scholar 

  25. Tsai IY, Kimura M, Stockton R, Green JA, Puig R, Jacobson B, et al. Fibroblast adhesion to micro- and nano-heterogeneous topography using diblock copolymers and homopolymers. J Biomed Mater Res A. 2004;71:462–9.

    Article  Google Scholar 

  26. Hamilton DW, Riehle MO, Monaghan W, Curtis AS. Articular chondrocyte passage number: influence on adhesion, migration, cytoskeletal organisation and phenotype in response to nano- and micro-metric topography. Cell Biol Int. 2005;29:408–21.

    Article  CAS  Google Scholar 

  27. Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4:1798–806.

    Article  CAS  Google Scholar 

  28. Stockton RA, Jacobson BS. Modulation of cell–substrate adhesion by arachidonic acid: lipoxygenase regulates cell spreading and ERK1/2-inducible cyclooxygenase regulates cell migration in NIH-3T3 fibroblasts. Mol Biol Cell. 2001;12:1937–56.

    CAS  Google Scholar 

  29. Khor HL, Kuan Y, Kukula H, Tamada K, Knoll W, Moeller M, et al. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells. Biomacromolecules. 2007;8:1530–40.

    Article  CAS  Google Scholar 

  30. Kill IR. Localisation of the Ki-67 antigen within the nucleolus. Evidence for a fibrillarin-deficient region of the dense fibrillar component. J Cell Sci. 1996;109(Pt 6):1253–63.

    CAS  Google Scholar 

  31. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–5.

    CAS  Google Scholar 

  32. Knuchel R, Hofstaedter F, Sutherland RM, Keng PC. Proliferation-associated antigens PCNA and Ki-67 in two- and three-dimensional experimental systems of human squamous epithelial carcinomas. Verh Dtsch Ges Pathol. 1990;74:275–8.

    CAS  Google Scholar 

  33. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.

    Article  CAS  Google Scholar 

  34. Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11:642–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Tõnu Järveots, Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, for use of his Critical point dryer and Jürgen Innos, Department of Physiology, University of Tartu, for language correction of this article. This study was financially supported by the funding from the Estonian Ministry of Education and Research targeted financing SF0180148s08, SF0180058s07 by the Estonian Science Foundation research grant funding ETF6576, and ETF7479, ETF8428, ETF8420, ETF8377, ETF8932, ETF9282, by EMBO Installation Grant, by the European Union through the European Regional Development Fund via Estonia–Latvia Program and Developing Estonian–Latvian Medical Area project and Centre of Excellence “Mesosystems: Theory and Applications” and by European Social Fund project Functional Materials and Processes 1.2.0401.09-0079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Reemann.

Additional information

Paula Reemann and Triin Kangur contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reemann, P., Kangur, T., Pook, M. et al. Fibroblast growth on micro- and nanopatterned surfaces prepared by a novel sol–gel phase separation method. J Mater Sci: Mater Med 24, 783–792 (2013). https://doi.org/10.1007/s10856-012-4829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4829-6

Keywords

Navigation