Skip to main content
Log in

Galactose substituted zinc phthalocyanines as near infrared fluorescence probes for liver cancer imaging

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Galactose substituted with zinc phthalocyanines were synthesized and characterized as near infrared fluorescent probes. The probes have good water-solubility and high emission ability in the near infrared region. With nudemice bearing liver cancer as models, in vivo fluorescence imaging effects and organ distributions of probes show that zinc phthalocyanines with three or four galactose units have good cell biocompatibility in vitro and targeting effects for liver cancer imaging in vivo. These results show the potential of these near infrared optical probes in the diagnosis of cancer in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weissleder R, Pitte MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9.

    Article  CAS  Google Scholar 

  2. Luker GD, Luker KE Optical imaging: current applications and future directions. J Nucl Med. 2008;49(1):1–4.

    Google Scholar 

  3. Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14(1):71–9.

    Article  CAS  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40.

    Article  CAS  Google Scholar 

  5. Çamur M, Bulut M, Kandaz M, Güney O. Synthesis, characterization and fluorescence behavior of new fluorescent probe phthalocyanines bearing coumarin substituents. Polyhedron. 2009;28(2):233–8.

    Article  Google Scholar 

  6. Nesterova IV, Erdem SS, Pakhomov S, Hammer RP, Soper SA. Phthalocyanine dimerization-based molecular beacons using Near-IR fluorescence. J Am Chem Soc. 2009;131(7):2432–3.

    Article  CAS  Google Scholar 

  7. Duan W, Smith K, Savoie H, Greenman J, Boyle RW. Near IR emitting isothiocyanato-substituted fluorophores: their synthesis and bioconjugation to monoclonal antibodies. Biomol Chem. 2005;3:2384–6.

    Article  CAS  Google Scholar 

  8. Dubuc C, Langlois R, Bénard F, Cauchon N, Klarskov K, Tone P, et al. Targeting gastrin-releasing peptide receptors of prostate cancer cells for photodynamic therapy with a phthalocyanine-bombesin conjugate. Bioorg Med Chem Lett. 2008;18:2424–7.

    Article  CAS  Google Scholar 

  9. Lv F, He X, Lu L, Wu L, Liu T. Synthesis, properties and Near-infrared imaging evaluation of glucose conjugated zinc phthalocyanines via Click reaction. J Porphyr Phthalocyanines. 2012;16(1):77–84.

    Article  CAS  Google Scholar 

  10. Pauli U, Vag T, Haag R, Spieles M, Wenzel M, Kaiser WA, et al. An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem. 2009;44:3496–503.

    Article  CAS  Google Scholar 

  11. Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem. 2003;14:177–86.

    Article  CAS  Google Scholar 

  12. Ferro-Flores G, Ramírez F, Meléndez-Alafort L, Santos-Cuevas CL. Peptides for in vivo target-specific cancer imaging. Mini-Rev Med Chem. 2010;10(1):87–97.

    Article  CAS  Google Scholar 

  13. Zou P, Xu S, Povoski SP, Wang A, Johnson MA, Martin EW, et al. Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm. 2009;6(2):428–40.

    Article  CAS  Google Scholar 

  14. Vollmer S, Vater A, Licha K, Gemeinhardt I, Gemeinhardt O, Voigt J, et al. Extra domain B fibronectin as a target for near-infrared fluorescence imaging of rheumatoid arthritis affected joints in vivo. Mol Imaging. 2009;8(6):30–40.

    Google Scholar 

  15. Dumoulin F, Durmuş M, Ahsen V, Nyokong T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev. 2010;254(23):2792–847.

    Article  CAS  Google Scholar 

  16. Xiang Z, Pandey RK. Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anti-Cancer Agents Med Chem. 2008;8(3):241–68.

    Article  Google Scholar 

  17. DiStefano G, Fiume L, Domenicali M, Busi C, Chieco P, Kratz F, et al. Doxorubicin coupled to lactosaminated albumin: effects on rats with liver fibrosis and cirrhosis. Dig Liver Dis. 2006; 38 (6),404–8.

    Google Scholar 

  18. Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly (ethylene glycol)-poly(D, l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem. 2003;14:177–86.

    Article  CAS  Google Scholar 

  19. Ma P, Liu S, Huang Y, Chen X, Zhang L, Jin X. Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials. 2010;31:2646–54.

    Article  CAS  Google Scholar 

  20. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. J Annu Rev Biochem. 1982;51(1):531–4.

    Article  CAS  Google Scholar 

  21. Zhang X, Simmons CG, Corey DR. Liver cell specific targeting of peptide nucleic acid oligomers. Bioorg Med Chem Lett. 2001;11:1269–72.

    Article  CAS  Google Scholar 

  22. Zorlu Y, Ermeydan MA, Dumoulin F, Ahsen V, Savoie H, Boyle RW. Glycerol and galactose substituted zinc phthalocyanines.synthesis and photodynamic activity. Photochem Photobiol Sci. 2009;8:312–8.

    Article  CAS  Google Scholar 

  23. Choi CF, Huang JD, Lo PC, Fong WP, Ng DKP. Glycosylated zinc(II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org Biomol Chem. 2008;6:2173–81.

    Article  CAS  Google Scholar 

  24. Zorlu Y, Dumoulin F, Bouchu D, Ahsen V, Lafont D. Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers. Tetrahedron Lett. 2010;51(50):6615–8.

    Article  CAS  Google Scholar 

  25. Sorensen M, Frisch K, Bender D, Keiding S. The potential use of 2-[18F] fluoro-2-deoxy-D-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2011;38:1723–31.

    Article  CAS  Google Scholar 

  26. Hawary DL, Motaleb MA, Farag H, Guirguis OC, Elsabee MZ. Lactosaminated N-succinyl-chitosan as a liver-targeted carrier of 99mTc in vivo for nuclear imaging and biodistribution. J Label Compd Radiopharm. 2011; 54: 664–70.

    Google Scholar 

  27. Alvarez-Mico X, Calvete MJF, Hanack M, Ziegler T. The first example of anomeric glycoconjugation to phthalocyanines. Tetrahedron Lett. 2006;47:3283–6.

    Article  CAS  Google Scholar 

  28. Heibrt BJ, Dorsey JN. octanol-water partition coefficient estimation by micellar electrokinetic capillary chromatography. Anal Chem. 1995;67:744–9.

    Article  Google Scholar 

  29. Ribeiro AO, Tome JP, Neves MG, Tome AC, Cavaleiro JA, Iamamoto Y, Torres T. [1,2,3,4-Tetrakis(α/β-d-galactopyranos-6-yl)phthalocyaninato] zinc(II): a water-soluble phthalocyanine. Tetrahedron Lett. 2006;47:9177–80.

    Article  CAS  Google Scholar 

  30. Soares AR, Tome JP, Neves MG, Tome AC, Cavaleiro JA, Torres T. Synthesis of water-soluble phthalocyanines bearing four or eight D-galactose units. Carbohydr Res. 2009; 344: 507–10.

    Google Scholar 

  31. Lv F, He X, Lu L, Wu L, Liu T. A novel water-soluble near-infrared glucose-conjugated porphyrin: synthesis, properties and its optical imaging effect. J Porphr Phthalocyanines. 2011; 15(4): 217–22.

    Google Scholar 

  32. Lyubimtsev A, Iqbal Z, Crucius G, Syrbu S, Taraymovich E, Ziegler T, et al. Aggregation behavior and UV-vis spectra of tetra- and octaglycosylated zinc phthalocyanines. J Porphyr Phthalocyanines. 2011; 15(1): 39–46.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ph. D. Programs Foundation of Ministry of Education of China (No.20101106120052), the National Nature Science Foundation of China (No.31200732) and the National Basic Research Program of China (No.2006CB705703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, F., Li, Y., Cao, B. et al. Galactose substituted zinc phthalocyanines as near infrared fluorescence probes for liver cancer imaging. J Mater Sci: Mater Med 24, 811–819 (2013). https://doi.org/10.1007/s10856-012-4820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4820-2

Keywords

Navigation