Skip to main content

Advertisement

Log in

In vitro osteoclast-like and osteoblast cells’ response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Successful long term bone replacement and repair remain a challenge today. Nanotechnology has made it possible to alter materials’ characteristics and therefore possibly improve on the material itself. In this study, biphasic hydroxyapatite/β-tricalcium phosphate nanobioceramic scaffolds were prepared by the electrospinning technique in order to mimic the extracellular matrix. Scaffolds were characterised by scanning electron microscopy (SEM) and attenuated total reflectance–fourier transform infrared. Osteoblasts as well as monocytes that were differentiated into osteoclast-like cells, were cultured separately on the biphasic bioceramic scaffolds for up to 6 days and the proliferation, adhesion and cellular response were determined using lactate dehydrogenase cytotoxicity assay, nucleus and cytoskeleton dynamics, analysis of the cell cycle progression, measurement of the mitochondrial membrane potential and the detection of phosphatidylserine expression. SEM analysis of the biphasic bioceramic scaffolds revealed nanofibers spun in a mesh-like scaffold. Results indicate that the biphasic bioceramic electrospun scaffolds are biocompatible and have no significant negative effects on either osteoblasts or osteoclast-like cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M, Worch H, et al. Bioactive silica–collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater. 2009;5:1979–90.

    Article  CAS  Google Scholar 

  2. Schilling AF, Linhart W, Filke S, Gebauer M, Schinke T, Rueger JM, Amling M. Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials. 2004;25:3963–72.

    Article  CAS  Google Scholar 

  3. Heness G, Ben-Nissan B. Innovative bioceramics. Mater Forum. 2004;27:104–14.

    CAS  Google Scholar 

  4. Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability—predictor of “bioactivity”? Acta Biomater. 2010;6:4181–8.

    Article  CAS  Google Scholar 

  5. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95:2126–46.

    Article  CAS  Google Scholar 

  6. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.

    Article  CAS  Google Scholar 

  7. Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2009;29:1245–55.

    Article  CAS  Google Scholar 

  8. Dorozhkin SV. Bioceramics based on calcium orthophosphates (Review). Glass and Ceram. 2007;64:442–7.

    Article  CAS  Google Scholar 

  9. Sergey VD. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8:963–77.

    Article  Google Scholar 

  10. Von der Mark K, Park J, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 2010;339:131–53.

    Article  Google Scholar 

  11. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9.

    Article  CAS  Google Scholar 

  12. Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Shin J, et al. Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration. Biomaterials. 2010;31:1260–9.

    Article  CAS  Google Scholar 

  13. Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34.

    Article  CAS  Google Scholar 

  14. Hieu LC, Quoc LH, Thanh VV, Nguyen TD, An PV, Hung LT, Khanh L. Current medical product development for diagnosis, surgical planning and treatment in the areas of Neurosurgery, Orthopeadic and Dental-Cranio-Maxillofacial surgery in Vietnam. IFMBE Proc 2010;27:123–126.

    Google Scholar 

  15. Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today. 2010;13:14–22.

    Article  CAS  Google Scholar 

  16. Vallet-Regí M. Evolution of bioceramics within the field of biomaterials. C R Chim. 2010;13:174–85.

    Article  Google Scholar 

  17. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379–91.

    Article  CAS  Google Scholar 

  18. Schilling AF, Filke S, Brink S, Korbmacher H, Amling M, Rueger JM. Osteoclasts and biomaterials. Eur J Trauma. 2006;32:107–13.

    Article  Google Scholar 

  19. Jones JR. New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc. 2009;29:1275–81.

    Article  CAS  Google Scholar 

  20. Athanasou NA. The osteoclast-what’s new? Skelet Radiol. 2011;40:1137–40.

    Article  Google Scholar 

  21. Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today. 2010;13:24–30.

    Article  CAS  Google Scholar 

  22. Costa-Rodrigues J, Fernandes A, Lopes MA, Fernandes MH. Hydroxyapatite surface roughness: complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomater. 2012;8:1137–45.

    Article  CAS  Google Scholar 

  23. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2002;10:S96–101.

    Google Scholar 

  24. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials. 2008;29:944–53.

    Article  CAS  Google Scholar 

  25. Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–806.

    Article  CAS  Google Scholar 

  26. Ripamonti U, Roden LC, Renton LF. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials. 2012;33:3813–23.

    Article  CAS  Google Scholar 

  27. Ripamonti U, Crooks J, Khoali L, Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials. 2009;30:1428–39.

    Article  CAS  Google Scholar 

  28. Ripamonti U, Richter PW, Nilen RWN, Renton L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus. J Cell Mol Med. 2008;12:1–15.

    Google Scholar 

  29. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  Google Scholar 

  30. Franco PQ, João CFC, Silva JC, Borges JP. Electrospun hydroxyapatite fibers from a simple sol–gel system. Mater Lett. 2012;67:233–6.

    Article  CAS  Google Scholar 

  31. Dubben S, Honscheid A, Winkler K, Rink L, Haase H. Cellular zinc homeostasis is a regulator in monocyte differentiation of HL-60 cells by 1{alpha},25-dihydroxyvitamin D3. J Leukoc Biol. 2010;87(5):833–44.

    Article  CAS  Google Scholar 

  32. Soares-Schanoski A, Gomez-Pina V, del Fresno C, Rodriguez-Rojas A, Garcia F, Glaria A, Sanchez M, et al. 6-Methylprednisolone down-regulates IRAK-M in human and murine osteoclasts and boosts bone-resorbing activity: a putative mechanism for corticoid-induced osteoporosis. J Leukoc Biol. 2007;82:700–9.

    Article  CAS  Google Scholar 

  33. Kondo N, Tokunaga K, Ito T, Arai K, Amizuka N, Minqi L, Kitahara H, et al. High dose glucocorticoid hampers bone formation and resorption after bone marrow ablation in rat. Microsc Res Tech. 2006;69:839–46.

    Article  CAS  Google Scholar 

  34. Xu JL, Khor KA, Sui JJ, Zhang JH, Chen WN. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials. 2009;30:5385–91.

    Article  CAS  Google Scholar 

  35. Alcaide M, Serrano MC, Pagani R, Sanchez-Salcedo S, Nieto A, Vallet-Regi M, Portoles MT. L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-betaTCP/agarose biomaterial. J Biomed Mater Res A. 2009;89:539–49.

    Google Scholar 

  36. Alcaide M, Serrano M, Pagani R, Sánchez-Salcedo S, Vallet-Regí M, Portolés M. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30:45–51.

    Article  CAS  Google Scholar 

  37. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis. 2007;12:803–13.

    Article  CAS  Google Scholar 

  38. Li X, Nan K, Shi S, Chen H. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol. 2012;50:43–9.

    Article  CAS  Google Scholar 

  39. Kailasanathan C, Selvakumar N, Naidu V. Structure and properties of titania reinforced nano-hydroxyapatite/gelatin bio-composites for bone graft materials. Ceram Int. 2012;38:571–9.

    Article  CAS  Google Scholar 

  40. Zhang X, Cai Q, Liu H, Zhang S, Wei Y, Yang X, Lin Y, et al. Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Mater Lett. 2012;73:172–5.

    Article  CAS  Google Scholar 

  41. Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med. 2008;19:2039–46.

    Article  CAS  Google Scholar 

  42. Hilal Turkoglu S. Novel hybrid scaffolds for the cultivation of osteoblast cells. Int J Biol Macromol. 2011;49:838–46.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa. SEM analysis was performed at The National Centre for Nano-Structured Materials, CSIR, Pretoria, South Africa. Flow cytometric analysis was conducted at the Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa. Special thanks to the people working in Prof. A. Joubert’s Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Wepener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wepener, I., Richter, W., van Papendorp, D. et al. In vitro osteoclast-like and osteoblast cells’ response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. J Mater Sci: Mater Med 23, 3029–3040 (2012). https://doi.org/10.1007/s10856-012-4751-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4751-y

Keywords

Navigation