Popa MV, Demetrescu I, Vasilescu E, Drob P, Santana Lopez A, Mirza-Rosca J, Vasilescu C, Ionita D. Corrosion susceptibility of implant materials Ti-5Al-4V and Ti-6Al-4Fe in artificial extra-cellular fluids. Electrochim Acta. 2004;49:2113–21.
Article
CAS
Google Scholar
Vasilescu E, Drob P, Raducanu D, Cojocaru VD, Cinca I, Iordachescu D, Ion R, Popa M, Vasilescu C. In vitro biocompatibility and corrosion resistance of a new implant titanium base alloy. J Mater Sci Mater Med. 2010;21:1959–68.
Article
CAS
Google Scholar
Vasilescu E, Drob P, Vasilescu C, Drob SI, Bertrand E, Gordin DM, Gloriant T. Corrosion resistance of the new Ti-25Ta-25Nb alloy in severe functional conditions. Mater Corros. 2010;61:947–54.
Article
CAS
Google Scholar
Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus. Acta Biomater. 2011;7:2320–6.
Article
CAS
Google Scholar
Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomater. 2009;5:3625–39.
Article
CAS
Google Scholar
Barranco V, Escudero ML, Garcia-Alonso MC. Influence of the microstructure and topography and the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomater. 2011;7:2716–25.
Article
CAS
Google Scholar
Cui FZ, Li DJ. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Technol. 2000;131:481–7.
Article
CAS
Google Scholar
Kothari DC, Kale AN. Recent trends in surface engineering using cathodic arc technique. Surf Coat Technol. 2002;158–159:174–9.
Article
Google Scholar
Singh R, Chowdhury SG, Tiwari SK, Dahotre NB. Laser surface processing of Ti6Al4V in gaseous nitrogen: corrosion performance in physiological solution. J Mater Sci Mater Med. 2008;19:1363–9.
Article
CAS
Google Scholar
Singh H, Sidhu BS, Puri D, Prakash S. Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings—a review. Mater Corros. 2007;58:92–102.
Article
CAS
Google Scholar
Venugopalan R, Weimer JJ, George MA, Lucas LC. The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti-6Al-4V alloy. Biomaterials. 2000;21:1669–77.
Article
CAS
Google Scholar
Yildiz F, Yetim AF, Alsaran A, Celik A. Plasma nitriding behaviour of Ti6Al4V orthopaedic alloy. Surf Coat Technol. 2008;202:2471–6.
Article
CAS
Google Scholar
Fossati A, Borgioli F, Galvanetto E, Bacci T. Corrosion resistance properties of plasma nitrided Ti-6Al-4V alloy in nitric acid solutions. Corros Sci. 2004;46:917–27.
Article
CAS
Google Scholar
Zhao J, Garza EG, Lam KS, Jones CM. Comparison study of physical vapour-deposited and chemical vapour-deposited titanium nitride thin films using X-ray photoelectron spectroscopy. Appl Surf Sci. 2000;158:246–51.
Article
CAS
Google Scholar
Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011;7:1379–86.
Article
CAS
Google Scholar
Bernard SA, Balla VK, Davies NM, Bose S, Bandyopadhyay A. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 2011;7:1902–12.
Article
CAS
Google Scholar
Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004;47:49–121.
Article
Google Scholar
Korotin DM, Bartkowski S, Kurmaev EZ, Meumann M, Yakushina EB, Valiev RZ, Cholakh SO. Surface characterization of titanium implants treated in hydrofluoric acid. J Biomater Nanobiotechnol. 2012;3:87–91.
Article
CAS
Google Scholar
Dearnaley G. Ion beam modification of metals. Nucl Instrum Meth Phys Res B. 1990;50:358–67.
Article
Google Scholar
Rauschenbach B. Mechanical properties of nitrogen ion-implanted Ti-6Al-4V. Surf Coat Technol. 1994;66:279–82.
Article
CAS
Google Scholar
Guemmaz M, Mosser A, Boudoukha L, Grob JJ, Raiser D, Sens JC. Ion beam synthesis of non-stoichiometric titanium carbide: composition, structure and nanoindentation studies. Nucl Instrum Meth Phys Res B. 1996;111:263–70.
Article
CAS
Google Scholar
Buchanan RA, Rigney ED Jr, Williams JM. Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion. J Biomed Mater Res Part A. 1987;21:355–66.
Article
CAS
Google Scholar
Johansson C, Lausmaa J, Rostlund T, Thomsen P. Commercially pure titanium and Ti6Al4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci Mater Med. 1993;4:132–41.
Article
CAS
Google Scholar
Rostlund T, Thomsen P, Bjursten LM, Ericson LLE. Difference in tissue response to nitrogen-ion-implanted titanium and c.p. titanium in abdominal wall of the rat. J Biomed Mater Res. 1990;24:847–60.
Article
CAS
Google Scholar
Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials. 1996;17:929–40.
Article
CAS
Google Scholar
Annunziata M, Oliva A, Basile MA, Giordano M, Mazzola N, Rizzo A, Lanza A, Guida L. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent. 2011;39:720–8.
Article
CAS
Google Scholar
Huang HH, Hsu CH, Pan SJ, He JL, Chen CC, Lee TL. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications. Appl Surf Sci. 2005;244:252–6.
Article
CAS
Google Scholar
Jang HW, Lee HL, Ha JY, Kim KH, Kwon TY. Surface characteristics and osteoblast cell response on TiN- and TiAlN-coated Ti implant. Biomed Eng Lett. 2011;1:99–107.
Article
Google Scholar
Chen CC, Lin CT, Lee SY, Lin LH, Huang CF, Ou KL. Biosensing of biophysical characterization by metal-aluminium nitride-metal capacitor. Appl Surf Sci. 2007;253:5173–8.
Article
CAS
Google Scholar
Ziegler JF. Ion implantation physics. In: Ziegler JF, editor. Handbook of ion implantation technology. Amsterdam: Elsevier; 1992. p. 1–68.
Google Scholar
Geetha M, Singh AK, Asokamani R, Gogia AK. Ti-based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.
Article
CAS
Google Scholar
Hoar TP, Mears DC. Corrosion-resistant alloys in chloride solutions: materials for surgical implants. Proc R Soc Lond A. 1966;294:486–510.
Article
CAS
Google Scholar
Hanawa T. In vitro metallic biomaterials and surface modification. Mater Sci Eng A. 1999;267:260–6.
Article
Google Scholar
Vasilescu E, Drob P, Raducanu D, Cinca I, Mareci D, Calderon Moreno JM, Popa M, Vasilescu C, Mirza Rosca JC. Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros Sci. 2009;51:2885–96.
Article
CAS
Google Scholar
Bastos AC, Somoes AM, Gonzalez S, Gonzalez-Garcia Y, Souto RM. Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electron microscope. Electrochem Commun. 2004;6:1212–5.
Article
CAS
Google Scholar
Souto RM, Burstein GT. A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro. J Mater Sci Mater Med. 1996;7:337–43.
Article
CAS
Google Scholar
Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterisation of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res. 1995;10:178–86.
Article
CAS
Google Scholar
Mosman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
Article
Google Scholar
Cimpean A, Popescu S, Ciofrangeanu CM, Gleizes AN. Effect of LP-MOCVD prepared TiO2 thin films on the in vitro behaviour of gingival fibroblasts. Mater Chem Phys. 2011;125:485–92.
Article
CAS
Google Scholar
Glawischnig H. Process simulation and ion implantation. In: Ziegler JF, editor. Handbook of ion implantation technology. Amsterdam: Elsevier; 1992. p. 223–70.
Google Scholar
Milošev I, Strehblow HH, Navinšek B, Metikoš-Huković M. Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surf Interface Anal. 1995;23:529–39.
Article
Google Scholar
Maurice V, Despert G, Zanna S, Josso P, Bacos MP, Marcus P. XPS study of the initial stages of oxidation of α2-Ti3Al and y-TiAl intermetallic alloys. Acta Mater. 2007;55:3315–25.
Article
CAS
Google Scholar
Faghihi S, Azari F, Szpunar JA, Vali H, Tabrizian M. Titanium crystal orientation as a tool for the improved and regulated cell attachment. J Biomed Mater Res Part A. 2009;91:656–62.
Article
Google Scholar
Dalmau R, Collazo R, Mita S, Sitar Z. X-ray photoelectron spectroscopy characterization of aluminium nitride surface oxides: thermal and hydrothermal evolution. J Electron Mater. 2007;36:414–9.
Article
CAS
Google Scholar
Timmermans B, Vaeck N, Hubin A, Reniers F. Chemical effects in Auger electron spectra of aluminium. Surf Interface Anal. 2002;34:356–9.
Article
CAS
Google Scholar
Wu G, Ding K, Zeng X, Wang X, Yao S. Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scripta Mater. 2009;61:269–72.
Article
CAS
Google Scholar
Onate JI, Alonso F, Garcia A. Improvement of tribological properties by ion implantation. Thin Solid Films. 1998;317:471–6.
Article
CAS
Google Scholar
Sheela G, Ramasamy M, Rao CRK, Pushpavanam M. Electrochemical assessment on corrosion behaviour of electrochemically joined dissimilar metal joints. Bull Electrochem. 2001;17:347–50.
CAS
Google Scholar
Blasco-Tamarit E, Igual-Munoz IA, Garcia JA, Garcia-Garcia DM. Galvanic corrosion of titanium coupled to welded titanium in LiBr solutions at different temperatures. Corros Sci. 2009;51:1095–102.
Article
CAS
Google Scholar
Subramaniam M, Jalal SM, Rickard JD, Harris AS, Bolander EM, Spelsberg CT. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ERα cell: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem. 2002;87:9–15.
Article
CAS
Google Scholar
Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette PM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine: material science, surface science, biological responses and medical applications. Heidelberg: Springer; 2001. p. 172–230.
Google Scholar
Chien CC, Liu KT, Duh JG, Chang KW, Chung KH. Effect of nitride film coatings on cell compatibility. Dent Mater. 2008;24:986–93.
Article
CAS
Google Scholar
Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41:422–30.
Article
CAS
Google Scholar
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.
Article
CAS
Google Scholar
Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10:21–33.
Article
CAS
Google Scholar
Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–31.
Article
CAS
Google Scholar
Yang RS, Tang CH, Ling QD, Liu SH, Fu WM. Regulation of fibronectin fibrillogenesis by protein kinases in cultured rat osteoblasts. Mol Pharmacol. 2002;61:1163–73.
Article
CAS
Google Scholar
Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–441.
Article
CAS
Google Scholar
Llopis-Hernandez V, Rico P, Ballester-Beltran J, Moratal D, Salmeron-Sanchez M. Role of surface chemistry in protein remodeling at the cell-material interface. PLoS ONE. 2011. doi:10.1371/journal.pone.0019610.
Google Scholar