Skip to main content

Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology

Abstract

In this study, the new Hardion+ micro-implanter technology was used to modify surface properties of biomedical pure titanium (CP-Ti) and Ti–6Al–4V ELI alloy by implantation of nitrogen ions. This process is based on the use of an electron cyclotron resonance ion source to produce a multienergetic ion beam from multicharged ions. After implantation, surface analysis methods revealed the formation of titanium nitride (TiN) on the substrate surfaces. An increase in superficial hardness and a significant reduction of friction coefficient were observed for both materials when compared to non-implanted samples. Better corrosion resistance and a significant decrease in ion release rates were observed for N-implanted biomaterials due to the formation of the protective TiN layer on their surfaces. In vitro tests performed on human fetal osteoblasts indicated that the cytocompatibility of N-implanted CP-Ti and Ti–6Al–4V alloy was enhanced in comparison to that of the corresponding non treated samples. Consequently, Hardion+ implantation technique can provide titanium alloys with better qualities in terms of corrosion resistance, cell proliferation, adhesion and viability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Popa MV, Demetrescu I, Vasilescu E, Drob P, Santana Lopez A, Mirza-Rosca J, Vasilescu C, Ionita D. Corrosion susceptibility of implant materials Ti-5Al-4V and Ti-6Al-4Fe in artificial extra-cellular fluids. Electrochim Acta. 2004;49:2113–21.

    Article  CAS  Google Scholar 

  2. Vasilescu E, Drob P, Raducanu D, Cojocaru VD, Cinca I, Iordachescu D, Ion R, Popa M, Vasilescu C. In vitro biocompatibility and corrosion resistance of a new implant titanium base alloy. J Mater Sci Mater Med. 2010;21:1959–68.

    Article  CAS  Google Scholar 

  3. Vasilescu E, Drob P, Vasilescu C, Drob SI, Bertrand E, Gordin DM, Gloriant T. Corrosion resistance of the new Ti-25Ta-25Nb alloy in severe functional conditions. Mater Corros. 2010;61:947–54.

    Article  CAS  Google Scholar 

  4. Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus. Acta Biomater. 2011;7:2320–6.

    Article  CAS  Google Scholar 

  5. Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomater. 2009;5:3625–39.

    Article  CAS  Google Scholar 

  6. Barranco V, Escudero ML, Garcia-Alonso MC. Influence of the microstructure and topography and the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomater. 2011;7:2716–25.

    Article  CAS  Google Scholar 

  7. Cui FZ, Li DJ. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Technol. 2000;131:481–7.

    Article  CAS  Google Scholar 

  8. Kothari DC, Kale AN. Recent trends in surface engineering using cathodic arc technique. Surf Coat Technol. 2002;158–159:174–9.

    Article  Google Scholar 

  9. Singh R, Chowdhury SG, Tiwari SK, Dahotre NB. Laser surface processing of Ti6Al4V in gaseous nitrogen: corrosion performance in physiological solution. J Mater Sci Mater Med. 2008;19:1363–9.

    Article  CAS  Google Scholar 

  10. Singh H, Sidhu BS, Puri D, Prakash S. Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings—a review. Mater Corros. 2007;58:92–102.

    Article  CAS  Google Scholar 

  11. Venugopalan R, Weimer JJ, George MA, Lucas LC. The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti-6Al-4V alloy. Biomaterials. 2000;21:1669–77.

    Article  CAS  Google Scholar 

  12. Yildiz F, Yetim AF, Alsaran A, Celik A. Plasma nitriding behaviour of Ti6Al4V orthopaedic alloy. Surf Coat Technol. 2008;202:2471–6.

    Article  CAS  Google Scholar 

  13. Fossati A, Borgioli F, Galvanetto E, Bacci T. Corrosion resistance properties of plasma nitrided Ti-6Al-4V alloy in nitric acid solutions. Corros Sci. 2004;46:917–27.

    Article  CAS  Google Scholar 

  14. Zhao J, Garza EG, Lam KS, Jones CM. Comparison study of physical vapour-deposited and chemical vapour-deposited titanium nitride thin films using X-ray photoelectron spectroscopy. Appl Surf Sci. 2000;158:246–51.

    Article  CAS  Google Scholar 

  15. Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011;7:1379–86.

    Article  CAS  Google Scholar 

  16. Bernard SA, Balla VK, Davies NM, Bose S, Bandyopadhyay A. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 2011;7:1902–12.

    Article  CAS  Google Scholar 

  17. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004;47:49–121.

    Article  Google Scholar 

  18. Korotin DM, Bartkowski S, Kurmaev EZ, Meumann M, Yakushina EB, Valiev RZ, Cholakh SO. Surface characterization of titanium implants treated in hydrofluoric acid. J Biomater Nanobiotechnol. 2012;3:87–91.

    Article  CAS  Google Scholar 

  19. Dearnaley G. Ion beam modification of metals. Nucl Instrum Meth Phys Res B. 1990;50:358–67.

    Article  Google Scholar 

  20. Rauschenbach B. Mechanical properties of nitrogen ion-implanted Ti-6Al-4V. Surf Coat Technol. 1994;66:279–82.

    Article  CAS  Google Scholar 

  21. Guemmaz M, Mosser A, Boudoukha L, Grob JJ, Raiser D, Sens JC. Ion beam synthesis of non-stoichiometric titanium carbide: composition, structure and nanoindentation studies. Nucl Instrum Meth Phys Res B. 1996;111:263–70.

    Article  CAS  Google Scholar 

  22. Buchanan RA, Rigney ED Jr, Williams JM. Ion implantation of surgical Ti-6Al-4V for improved resistance to wear-accelerated corrosion. J Biomed Mater Res Part A. 1987;21:355–66.

    Article  CAS  Google Scholar 

  23. Johansson C, Lausmaa J, Rostlund T, Thomsen P. Commercially pure titanium and Ti6Al4V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortical bone. J Mater Sci Mater Med. 1993;4:132–41.

    Article  CAS  Google Scholar 

  24. Rostlund T, Thomsen P, Bjursten LM, Ericson LLE. Difference in tissue response to nitrogen-ion-implanted titanium and c.p. titanium in abdominal wall of the rat. J Biomed Mater Res. 1990;24:847–60.

    Article  CAS  Google Scholar 

  25. Bordji K, Jouzeau JY, Mainard D, Payan E, Netter P. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials. 1996;17:929–40.

    Article  CAS  Google Scholar 

  26. Annunziata M, Oliva A, Basile MA, Giordano M, Mazzola N, Rizzo A, Lanza A, Guida L. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J Dent. 2011;39:720–8.

    Article  CAS  Google Scholar 

  27. Huang HH, Hsu CH, Pan SJ, He JL, Chen CC, Lee TL. Corrosion and cell adhesion behavior of TiN-coated and ion-nitrided titanium for dental applications. Appl Surf Sci. 2005;244:252–6.

    Article  CAS  Google Scholar 

  28. Jang HW, Lee HL, Ha JY, Kim KH, Kwon TY. Surface characteristics and osteoblast cell response on TiN- and TiAlN-coated Ti implant. Biomed Eng Lett. 2011;1:99–107.

    Article  Google Scholar 

  29. Chen CC, Lin CT, Lee SY, Lin LH, Huang CF, Ou KL. Biosensing of biophysical characterization by metal-aluminium nitride-metal capacitor. Appl Surf Sci. 2007;253:5173–8.

    Article  CAS  Google Scholar 

  30. Ziegler JF. Ion implantation physics. In: Ziegler JF, editor. Handbook of ion implantation technology. Amsterdam: Elsevier; 1992. p. 1–68.

    Google Scholar 

  31. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti-based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  32. Hoar TP, Mears DC. Corrosion-resistant alloys in chloride solutions: materials for surgical implants. Proc R Soc Lond A. 1966;294:486–510.

    Article  CAS  Google Scholar 

  33. Hanawa T. In vitro metallic biomaterials and surface modification. Mater Sci Eng A. 1999;267:260–6.

    Article  Google Scholar 

  34. Vasilescu E, Drob P, Raducanu D, Cinca I, Mareci D, Calderon Moreno JM, Popa M, Vasilescu C, Mirza Rosca JC. Effect of thermo-mechanical processing on the corrosion resistance of Ti6Al4V alloys in biofluids. Corros Sci. 2009;51:2885–96.

    Article  CAS  Google Scholar 

  35. Bastos AC, Somoes AM, Gonzalez S, Gonzalez-Garcia Y, Souto RM. Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electron microscope. Electrochem Commun. 2004;6:1212–5.

    Article  CAS  Google Scholar 

  36. Souto RM, Burstein GT. A preliminary investigation into the microscopic depassivation of passive titanium implant materials in vitro. J Mater Sci Mater Med. 1996;7:337–43.

    Article  CAS  Google Scholar 

  37. Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterisation of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res. 1995;10:178–86.

    Article  CAS  Google Scholar 

  38. Mosman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  39. Cimpean A, Popescu S, Ciofrangeanu CM, Gleizes AN. Effect of LP-MOCVD prepared TiO2 thin films on the in vitro behaviour of gingival fibroblasts. Mater Chem Phys. 2011;125:485–92.

    Article  CAS  Google Scholar 

  40. Glawischnig H. Process simulation and ion implantation. In: Ziegler JF, editor. Handbook of ion implantation technology. Amsterdam: Elsevier; 1992. p. 223–70.

    Google Scholar 

  41. Milošev I, Strehblow HH, Navinšek B, Metikoš-Huković M. Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surf Interface Anal. 1995;23:529–39.

    Article  Google Scholar 

  42. Maurice V, Despert G, Zanna S, Josso P, Bacos MP, Marcus P. XPS study of the initial stages of oxidation of α2-Ti3Al and y-TiAl intermetallic alloys. Acta Mater. 2007;55:3315–25.

    Article  CAS  Google Scholar 

  43. Faghihi S, Azari F, Szpunar JA, Vali H, Tabrizian M. Titanium crystal orientation as a tool for the improved and regulated cell attachment. J Biomed Mater Res Part A. 2009;91:656–62.

    Article  Google Scholar 

  44. Dalmau R, Collazo R, Mita S, Sitar Z. X-ray photoelectron spectroscopy characterization of aluminium nitride surface oxides: thermal and hydrothermal evolution. J Electron Mater. 2007;36:414–9.

    Article  CAS  Google Scholar 

  45. Timmermans B, Vaeck N, Hubin A, Reniers F. Chemical effects in Auger electron spectra of aluminium. Surf Interface Anal. 2002;34:356–9.

    Article  CAS  Google Scholar 

  46. Wu G, Ding K, Zeng X, Wang X, Yao S. Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scripta Mater. 2009;61:269–72.

    Article  CAS  Google Scholar 

  47. Onate JI, Alonso F, Garcia A. Improvement of tribological properties by ion implantation. Thin Solid Films. 1998;317:471–6.

    Article  CAS  Google Scholar 

  48. Sheela G, Ramasamy M, Rao CRK, Pushpavanam M. Electrochemical assessment on corrosion behaviour of electrochemically joined dissimilar metal joints. Bull Electrochem. 2001;17:347–50.

    CAS  Google Scholar 

  49. Blasco-Tamarit E, Igual-Munoz IA, Garcia JA, Garcia-Garcia DM. Galvanic corrosion of titanium coupled to welded titanium in LiBr solutions at different temperatures. Corros Sci. 2009;51:1095–102.

    Article  CAS  Google Scholar 

  50. Subramaniam M, Jalal SM, Rickard JD, Harris AS, Bolander EM, Spelsberg CT. Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ERα cell: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem. 2002;87:9–15.

    Article  CAS  Google Scholar 

  51. Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM. Properties and biological significance of natural oxide films on titanium and its alloys. In: Brunette PM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine: material science, surface science, biological responses and medical applications. Heidelberg: Springer; 2001. p. 172–230.

    Google Scholar 

  52. Chien CC, Liu KT, Duh JG, Chang KW, Chung KH. Effect of nitride film coatings on cell compatibility. Dent Mater. 2008;24:986–93.

    Article  CAS  Google Scholar 

  53. Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41:422–30.

    Article  CAS  Google Scholar 

  54. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  Google Scholar 

  55. Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10:21–33.

    Article  CAS  Google Scholar 

  56. Jayaraman M, Meyer U, Buhner M, Joos U, Wiesmann HP. Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 2004;25:625–31.

    Article  CAS  Google Scholar 

  57. Yang RS, Tang CH, Ling QD, Liu SH, Fu WM. Regulation of fibronectin fibrillogenesis by protein kinases in cultured rat osteoblasts. Mol Pharmacol. 2002;61:1163–73.

    Article  CAS  Google Scholar 

  58. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010;26:397–441.

    Article  CAS  Google Scholar 

  59. Llopis-Hernandez V, Rico P, Ballester-Beltran J, Moratal D, Salmeron-Sanchez M. Role of surface chemistry in protein remodeling at the cell-material interface. PLoS ONE. 2011. doi:10.1371/journal.pone.0019610.

    Google Scholar 

Download references

Acknowledgements

This research was funded in the frame of a Eurêka/MNT ERA-Net European consortium, Project “NanoBioAll” Advanced Metallic Biomaterials, Nano-Structured, for Implantable Medical Devices. Authors are thankful to Bianca Galateanu (University of Bucharest) for expert microscopy image analysis and Dr. Simona Popescu (Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest) for kind help in measuring the water contact angle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cimpean.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gordin, D.M., Gloriant, T., Chane-Pane, V. et al. Surface characterization and biocompatibility of titanium alloys implanted with nitrogen by Hardion+ technology. J Mater Sci: Mater Med 23, 2953–2966 (2012). https://doi.org/10.1007/s10856-012-4750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4750-z

Keywords

  • Nitrogen Implantation
  • Neutral Ringer
  • Modify Surface Property
  • Human Fetal Osteoblast
  • Human Fetal Osteoblast Cell Line