Plasma polypyrrole implants recover motor function in rats after spinal cord transection

  • Guillermo J. Cruz
  • Rodrigo Mondragón-Lozano
  • Araceli Diaz-Ruiz
  • Joaquín Manjarrez
  • Roberto Olayo
  • Hermelinda Salgado-Ceballos
  • Maria-Guadalupe Olayo
  • Juan Morales
  • Laura Alvarez-Mejía
  • Axayacatl Morales
  • Marisela Méndez-Armenta
  • Noel Plascencia
  • Maria del Carmen Fernandez
  • Camilo Ríos
Article

Abstract

We studied the use of three biocompatible materials obtained by plasma polymerization of pyrrole (PPy), pyrrole doped with iodine (PPy/I) and a copolymer formed with pyrrole and polyethylene glycol (PPy/PEG), implanted, separately, after a complete spinal cord transection in rats. Motor function assessed with the BBB scale and somatosensory evoked potentials (SEPs) in the implanted rats were studied. Results showed that the highest motor recovery was obtained in rats with PPy/I implants. They also showed a significant reduction in the latency of SEPs. Histological analyses showed no signs of implant rejection; on the contrary, implants based on PPy improved the SEPs conduction and motor function after lesion.

References

  1. 1.
    Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21:1355–70.CrossRefGoogle Scholar
  2. 2.
    Widerström-Noga EG, Felipe-Cuervo E, Broton JG, Duncan RC, Yezierski RP. Perceived difficulty in dealing with consequences of spinal cord injury. Arch Phys Med Rehabil. 1999;80:580–6.CrossRefGoogle Scholar
  3. 3.
    Salgado-Ceballos H, Guizar-Sahagun G, Feria-Velasco A, Grijalva I, Espitia L, Ibarra A, Madrazo I. Spontaneous long-term remyelination after traumatic spinal cord injury in rats. Brain Res. 1998;782:126–35.CrossRefGoogle Scholar
  4. 4.
    Fitch MT, Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209:294–301.CrossRefGoogle Scholar
  5. 5.
    Novikova LN, Novikov LN, Kellerth JO. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Curr Opin Neurol. 2003;16:711–5.CrossRefGoogle Scholar
  6. 6.
    Nomura H, Katayama Y, Shoichet MS, Tator CH. Complete spinal cord transection treated by implantation of a reinforced synthetic hydrogel channel results in syringomyelia and caudal migration of the rostral stump. Neurosurgery. 2006;59:183–92.CrossRefGoogle Scholar
  7. 7.
    Cruz GJ, Olayo MG, Lopez OG, Gomez LM, Morales J, Olayo R. Nanospherical particles of polypyrrole synthesized and doped by plasma. Polymer. 2010;51:4314–8.CrossRefGoogle Scholar
  8. 8.
    Lee JY, Bashur CA, Goldstein AS, Schmidt CE. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325–35.CrossRefGoogle Scholar
  9. 9.
    Durgam H, Sapp S, Deister C, Khaing Z, Chang E, Luebben S, Schmidt CE. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation. J Biomater Sci Polym Ed. 2010;21:1265–82.CrossRefGoogle Scholar
  10. 10.
    Thompson BC, Moulton SE, Richardson RT, Wallace GG. Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein. Biomaterials. 2011;32:3822–31.CrossRefGoogle Scholar
  11. 11.
    Moroder P, Runge MB, Wang H, Ruesink T, Lu L, Spinner RJ, Windebank AJ, Yaszemski MJ. Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 2011;7:944–53.CrossRefGoogle Scholar
  12. 12.
    Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, Chen B, Yaszemski MJ, Windebank AJ. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng A. 2009;15:1797–805.CrossRefGoogle Scholar
  13. 13.
    Reynolds LF, Bren MC, Wilson BC, Gibson GD, Shoichet MS, Murphy RJ. Transplantation of porous tubes following spinal cord transection improves hindlimb function in the rat. Spinal Cord. 2008;46:58–64.CrossRefGoogle Scholar
  14. 14.
    Olayo R, Ríos C, Salgado-Ceballos H, Cruz GJ, Morales J, Olayo MG, Alcaraz-Zubeldia M, Alvarez AL, Mondragon R, Morales A, Diaz-Ruiz A. Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. J Mater Sci Mater Med. 2008;19:817–26.CrossRefGoogle Scholar
  15. 15.
    Cruz GJ, Morales J, Olayo R. Films obtained by plasma polymerization of pyrrole. Thin Solid Films. 1999;342:119–26.CrossRefGoogle Scholar
  16. 16.
    Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996;139:244–56.CrossRefGoogle Scholar
  17. 17.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic Press; 1998.Google Scholar
  18. 18.
    Fehlings MG, Tator CH, Linden RD, Piper IR. Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol. 1988;69:65–78.CrossRefGoogle Scholar
  19. 19.
    Hu Y, Luk KD, Lu WW, Holmes A, Leong JC. Prevention of spinal cord injury with time-frequency analysis of evoked potentials: an experimental study. J Neurol Neurosurg Psychiatry. 2001;71:732–40.CrossRefGoogle Scholar
  20. 20.
    Hu Y, Luk KD, Lu WW, Leong JC. Application of time-frequency analysis to somatosensory evoked potential for intraoperative spinal cord monitoring. J Neurol Neurosurg Psychiatry. 2003;74:82–7.CrossRefGoogle Scholar
  21. 21.
    Colin E, Olayo MG, Cruz GJ, Carapia L, Morales J, Olayo R. Affinity of amine-functionalized plasma polymers with ionic solutions similar to those in the human body. Prog Org Coat. 2009;64:322–6.CrossRefGoogle Scholar
  22. 22.
    Bendrea AD, Cianga L, Cianga I. Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl. 2011;26:3–84.CrossRefGoogle Scholar
  23. 23.
    Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS. Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol. 2003;184:456–63.CrossRefGoogle Scholar
  24. 24.
    Hu Y, Wen CY, Li TH, Cheung MM, Wu EX, Luk KD. Somatosensory-evoked potentials as an indicator for the extent of ultrastructural damage of the spinal cord after chronic compressive injuries in a rat model. Clin Neurophysiol. 2011;122:1440–7.CrossRefGoogle Scholar
  25. 25.
    Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, Yao J, Chen F, Chen G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A. 2004;68:411–22.CrossRefGoogle Scholar
  26. 26.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5:17–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Guillermo J. Cruz
    • 1
  • Rodrigo Mondragón-Lozano
    • 2
  • Araceli Diaz-Ruiz
    • 3
  • Joaquín Manjarrez
    • 4
  • Roberto Olayo
    • 2
  • Hermelinda Salgado-Ceballos
    • 5
  • Maria-Guadalupe Olayo
    • 1
  • Juan Morales
    • 2
  • Laura Alvarez-Mejía
    • 2
  • Axayacatl Morales
    • 2
  • Marisela Méndez-Armenta
    • 3
  • Noel Plascencia
    • 6
  • Maria del Carmen Fernandez
    • 7
  • Camilo Ríos
    • 3
  1. 1.Departamento de FísicaInstituto Nacional de Investigaciones NuclearesOcoyoacacMexico
  2. 2.Departamento de FísicaUniversidad Autónoma Metropolitana IztapalapaMexicoMexico
  3. 3.Departamento de NeuroquímicaInstituto Nacional de Neurología y NeurocirugíaMexicoMexico
  4. 4.Laboratorio de Fisiología de la Formación ReticularInstituto Nacional de Neurología y NeurocirugíaMexicoMexico
  5. 5.Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexicoMexico
  6. 6.Centro Médico Nacional 20 de NoviembreISSSTEMexicoMexico
  7. 7.Departamento de ElectrofisiologíaInstituto Nacional de Neurología y NeurocirugíaMexicoMexico

Personalised recommendations