Skip to main content

Advertisement

Log in

Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Preparation and evaluation of new polyurethane membranes for wound dressing application was considered in this work. The membranes were prepared through amine curing reaction of epoxy-terminated polyurethane prepolymers and an antibacterial epoxy-functional quaternary ammonium compound (glycidyltriehtylammonium chloride, GTEACl. To render the prepared membranes to be highly absorptive of wound exudates, poly (ethylene glycol) polyols were introduced into the polyurethane networks. Evaluation of biocompatibity via both MTT assay and direct contact with two different cell lines (fibroblast and epidermal keratinocytes) reveled that membranes with appropriate loading of GTEACl showed proper biocompatibility. Promising antibacterial activity of the prepared membranes against Staphylococcus aureus and Escherichia coli bacteria was confirmed by both agar diffusion and shaking flask methods. The membranes with balanced crosslink density and ionic groups’ concentration possessed appropriate hydrophilicity and water vapor transmission rate; therefore, they could prevent the accumulation of exudates and decrease the surface inflammation in the wounded area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3–14.

    Article  Google Scholar 

  2. Pivarcsi A, Nagy I, Kemeny L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev. 2005;1:29–42.

    Article  CAS  Google Scholar 

  3. Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29:322–37.

    Article  CAS  Google Scholar 

  4. Aramwit P, Muangman P, Namviriyachote N, Srichana T. In vitro evaluation of the antimicrobial effectiveness and moisture binding properties of wound dressings. Int J Mol Sci. 2010;11:2864–74.

    Article  CAS  Google Scholar 

  5. Ignacio C, Barcellos L, Ferreira MD, Moura SAL, Soares IA, Oréfice RL. In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli. J Mater Sci Mater Med. 2011;22:1357–64.

    Article  CAS  Google Scholar 

  6. Rossum Mv, Vooijs DPP, Walboomers XF, Hoekstra MJ, Spauwen PHM, Jansen JA. The influence of a PHI-5-loaded silicone membrane, on cutaneous wound healing in vivo. J Mater Sci Mater Med. 2007;18:1449–56.

    Article  CAS  Google Scholar 

  7. Lionelli GT, Lawrence WT. Wound dressings. Surg Clin N Am. 2003;83:617–38.

    Article  Google Scholar 

  8. Yoo H-J, Kim H-D. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res Part B. 2008;85B:326–33.

    Article  CAS  Google Scholar 

  9. Witthayaprapakorn C, Molloy R, Nalampang K, Tighe BJ. Design and preparation of a bioresponsive hydrogel for biomedical application as a wound dressing. Adv Mater Res. 2008;55–57:681–4.

    Article  Google Scholar 

  10. Pal K, Banthia AK, Majumdar DK. Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing. J Mater Sci Mater Med. 2007;18:1889–94.

    Article  CAS  Google Scholar 

  11. Peles Z, Zilberman M. Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties. Acta Biomater. 2012;8:209–17.

    Article  CAS  Google Scholar 

  12. Chen J-P, Chiang Y. Bioactive electrospun silver nanoparticles-containing polyurethane nanofibers as wound dressings. J Nanosci Nanotechnol. 2010;10:7560–4.

    Article  CAS  Google Scholar 

  13. Peng HT, Martineau L, Hung A. Hydrogel-elastomer composite biomaterials: 4. experimental optimization of hydrogel-elastomer composite fibers for use as a wound dressing. J Mater Sci Mater Med. 2008;19:1803–13.

    Article  CAS  Google Scholar 

  14. Mertz PM, Marshall DA, Eaglstern WH. Occlusive wound dressings to prevent bacterial invasion and wound infection. J Am Acad Dermatol. 1985;12:662–8.

    Article  CAS  Google Scholar 

  15. Mayer D, Tsapogas M. Povidone–iodine and wound healing: a critical review. Wounds. 1993;5:14–23.

    Google Scholar 

  16. Mertz PM, Marshall DA, Kuglar MA. Povidone–iodine in polyethylene oxide hydrogel dressing: effect on multiplication of Staphylococcus aureus in partial thickness wounds. Arch Dermatol. 1986;122:1133–8.

    Article  CAS  Google Scholar 

  17. Mandy SH. Evaluation of a new povidone–iodine-impregnated polyethylene oxide gel occlusive dressing. J Am Acad Dermatol. 1985;13:655–9.

    Article  CAS  Google Scholar 

  18. Dizman B, Elasri MΟ, Mathias LJ. Novel antibacterial polymers. Smart Coatings II, ACS symposium series, vol 1002. Washington: American Chemical Society; 2009. p. 27–50.

  19. Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84. doi:10.1021/bm061150q.

    Article  CAS  Google Scholar 

  20. Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices. 2009;6:553–67.

    Article  Google Scholar 

  21. Stratton TR, Rickus JL, Youngblood JP. In vitro biocompatibility studies of antibacterial quaternary polymers. Biomacromolecules. 2009;10:2550–5.

    Article  CAS  Google Scholar 

  22. Harney MB, Pant RR, Fulmer PA, Wynne JH. Surface self-concentrating amphiphilic quaternary ammonium biocides as coating additives. Appl Mater Interfaces. 2009;1:39–41.

    Article  CAS  Google Scholar 

  23. Yao C, Li X, Neoh KG, Shi Z, Kang ET. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Membr Sci. 2008;320:259–67.

    Article  CAS  Google Scholar 

  24. Sajomsang W, Gonil P, Tantayanon S. Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: preparation and characterization. Int J Biol Macromol. 2009;44:419–27.

    Article  CAS  Google Scholar 

  25. Alipour SM, Nouri M, Mokhtari J, Bahrami SH. Electrospinning of poly (vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydr Res. 2009;344:2496–501.

    Article  CAS  Google Scholar 

  26. Yang JM, Yang SJ, Lin HT, Wu T-H, Chen H-J. Chitosan containing PU/Poly (NIPAAm) thermosensitive membrane for wound dressing. Mater Sci Eng C. 2008;28:150–6.

    Article  CAS  Google Scholar 

  27. Thomas V, Muthu J. Biomechanical studies on aliphatic physically crosslinked poly (urethane urea) for blood contact applications. J Mater Sci Mater Med. 2008;19:2721–33.

    Article  CAS  Google Scholar 

  28. Yeganeh H, Orang F, Solouk A, Rafienia M. Synthesis, characterization and preliminary investigation of blood compatibility of novel epoxy-modified polyurethane networks. J Bioact Compat Polym. 2008;23:276–300.

    Article  CAS  Google Scholar 

  29. Yeganeh H, Lakouraj MM, Jamshidi S. Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers. J Poylm Sci Part A. 2005;43:2985–96.

    Article  CAS  Google Scholar 

  30. Mcclure JD. Glycidyltrimethylammonium chloride and related compounds. J Org Chem. 1970;35:2059–61.

    Article  CAS  Google Scholar 

  31. Yeganeh H, Hojati-Talemi P. Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol). Polym Degrad Stab. 2007;92:480–9.

    Article  CAS  Google Scholar 

  32. Lee H, Neville K. Handbook of Epoxy Resin. New York: McGraw-Hill Co.; 1967.

    Google Scholar 

  33. Yagci MB, Bolca S, Heuts JPA, Ming W, With Gd. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds. Prog Org Coat. 2011;72:343–7.

    Article  CAS  Google Scholar 

  34. Wynne JH, Fulmer PA, McCluskey M, Mackey NM, Buchanan JP. Synthesis and development of a multifunctional self-decontaminating polyurethane coating. ACS Appl Mater Interfaces. 2011;3:2005–11.

    Article  CAS  Google Scholar 

  35. Krone CA, Ely JTA, Klingner T, Rando RJ. Isocyanates in flexible polyurethane foams. Bull Environ Contam Toxicol. 2003;70:328–35.

    Article  CAS  Google Scholar 

  36. Daman AP, Jickells SM, Castle L. Liquid chromatographic determination of residual isocyanate monomers in plastics intended for food contact use. J AOAC Int. 1995;78:711–9.

    Google Scholar 

  37. Duff DW, Maciel GE. Monitoring postcure reaction chemistry of residual isocyanate in 4,4′-methylene bis (phenyl isocyanate) based isocyanurate resins by I5N and I3C CP/MAS NMR. Macromolecules. 1991;24:381–97.

    Google Scholar 

  38. Yeganeh H, Jamshidi H, Jamshidi S. Synthesis and properties of novel biodegradable poly(ε-caprolactone)/poly (ethylene glycol) based polyurethane elastomers. Polym Int. 2007;56:41–9.

    Article  CAS  Google Scholar 

  39. Yeganeh H, Lakouraj MM, Jamshidi S. Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly (ε-caprolactone) and poly(ethylene glycol). Eur Polym J. 2005;41:2370–9.

    Article  CAS  Google Scholar 

  40. Chattopadhyay DK, Zakula AD, Dean Webster C. Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Prog Org Coat. 2009;64:128–37.

    Article  CAS  Google Scholar 

  41. Edwards PA, Striemer G, Webster DC. Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Prog Org Coat. 2006;57:128–39.

    Article  CAS  Google Scholar 

  42. Dietrich D, Keberle W, Witt H. Polyurethane ionomers, a new class of block polymers. Anpew Chem Int Ed Engl. 1970;9:40–50.

    Article  Google Scholar 

  43. Goddard RJ, Cooper SL. Polyurethane cationomers with pendant trimethylammonium groups. 1. Fourier transform infrared temperature studies. Macromolecules. 1995;28:1390–400.

    Article  CAS  Google Scholar 

  44. Khranovskii VA, Lipatov YS, Maslyuk AF. Dokl Akad Nauk SSSR Ser A. 1985;285:406–10.

    CAS  Google Scholar 

  45. Reynolds N, Spiess HW, Hayen H, Nefzger H, Eisenbach CD. Structure and deformation behaviour of model poly (ether–urethane) elastomers, 1. Infrared studies. Macromol Chem Phys. 1994;195:2855–73.

    Article  CAS  Google Scholar 

  46. Wilkes CE, Yusek CS. Investigation of domain structure in urethan elastomers by X-ray and thermal methods. J Macromol Sci Phys. 1973;B7:157–75.

    Article  Google Scholar 

  47. Niesten MCEJ, Brinke ten JW, Gaymans RJ. Segmented copolyetheresteraramids with extended poly (tetramethyleneoxide) segments. Polymer. 2001;42:1461–9.

    Article  CAS  Google Scholar 

  48. Christenson EM, Anderson JM, Hiltner A, Baer E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer. 2005;46:11744–54.

    Article  CAS  Google Scholar 

  49. Queen D, Gaylor JDS, Ebans JH, Courtney JM. The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials. 1987;8:367–71.

    Article  CAS  Google Scholar 

  50. Eaglstein WH, Davis SC, Mehle AL, Mertz PM. Optimal use of an occlusive dressing to enhance healing—effect of delayed application and early removal on wound healing. Arch Dermatol. 1988;124:392–5.

    Article  CAS  Google Scholar 

  51. Atiyeh BS, Ioannovich J, Al-Amm CA, El-Musa KA. Management of acute and chronic open wounds: The importance of moist environment in optimal wound healing. Curr Pharm Biotechnol. 2002;3:179–95.

    Article  CAS  Google Scholar 

  52. Field CK, Kerstein MD. Overview of wound healing in a moist environment. Am J Surg. 1994;167:S2–6.

    Article  Google Scholar 

  53. Zhao L, Xu L, Mitomo H, Yoshii F, Polymers C. Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydr Polym. 2006;64:473–80.

    Article  CAS  Google Scholar 

  54. Chen J-H, Ruckenstein E. Solvent-stimulated surface rearrangement of polyurethanes. J Colloid Interface Sci. 1990;135:496–507.

    Article  CAS  Google Scholar 

  55. Balakrishnan B, Mohanty M, Umashankarc PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.

    Article  CAS  Google Scholar 

  56. Nagamune H, Maeda T, Ohkura K, Yamamoto K, Nakajima M, Kourai H. Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicol In Vitro. 2000;14:139–47.

    Article  CAS  Google Scholar 

  57. Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob Agents Chemother. 1986;30:132–6.

    Article  CAS  Google Scholar 

  58. Pasquier N, Keul H, Heine E, Moeller M. From multifunctionalized poly (ethylene imine)s toward antimicrobial coatings. Biomacromolecules. 2007;8:2874–82.

    Article  CAS  Google Scholar 

  59. Zhu Y, Hu J, Yeung K. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers. Acta Biomater. 2009;5:3346–57.

    Article  CAS  Google Scholar 

  60. Westman EH, Ek M, Enarsson LE, Wagberg L. Assessment of antibacterial properties of polyvinylamine (PVAm) with different charge densities and hydrophobic modifications. Biomacromolecules. 2009;10:1478–83.

    Article  CAS  Google Scholar 

  61. Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules. 2007;8:1396–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Yeganeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yari, A., Yeganeh, H. & Bakhshi, H. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci: Mater Med 23, 2187–2202 (2012). https://doi.org/10.1007/s10856-012-4683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4683-6

Keywords

Navigation