Skip to main content
Log in

Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells grown on a synthetic substrate is a potential treatment for age-related macular degeneration (AMD), a common cause of irreversible vision loss in developed countries. Plasma polymers give the opportunity to tailor the surface chemistry of the artificial substrate whilst maintaining the bulk properties. In this study, plasma polymers with different functionalities were investigated in terms of their effect on RPE attachment and growth. Plasma polymers of acrylic acid (AC), allyl amine (AM) and allyl alcohol (AL) were fabricated and characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. Octadiene (OD) hydrocarbon films and tissue culture polystyrene were used as controls. Wettability varied from hydrophobic OD to relatively hydrophilic AC. XPS demonstrated four very different surfaces with the expected functionalities. Attachment, proliferation and morphological examination of an RPE cell line and primary RPE cells were investigated. Both cell types grew on all surfaces, with the exception of OD, although the proliferation rate of primary cells was low. Good epithelial morphology was also demonstrated. Plasma polymerised films show potential as cell carrier surfaces for RPE cells in the treatment of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheridan C, Krishna Y, Williams R, Mason S, Wong D, Heimann H, et al. Transplantation in the treatment of age-related macular degeneration: past, present and future directions. Expert Rev Ophthalmol. 2007;2(3):497–511.

    Article  Google Scholar 

  2. Krishna Y, Sheridan CM, Kent DL, Grierson I, Williams RL. Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. J Biomed Mat Res Part A. 2007;80(3):669–78.

    Article  Google Scholar 

  3. Williams R, Krishna Y, Dixon S, Haridas A, Grierson I, Sheridan C. Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation. J Mater Sci Mater Med. 2005;16(12):1087–92. doi:10.1007/s10856-005-4710-y.

    Article  CAS  Google Scholar 

  4. Krishna Y, Sheridan C, Kent D, Kearns V, Grierson I, Williams R. Expanded polytetrafluoroethylene as a substrate for retinal pigment epithelial cell growth and transplantation in age-related macular degeneration. Br J Ophthalmol. 2011;95(4):569–73.

    Article  CAS  Google Scholar 

  5. Wilson DJ, Williams RL, Pond RC. Plasma modification of PTFE surfaces part II: plasma-treated surfaces following storage in air or PBS. Surf Interface Anal. 2001;31(5):397–408.

    Article  CAS  Google Scholar 

  6. Wilson DJ, Williams RL, Pond RC. Plasma modification of PTFE surfaces part I: surfaces immediately following plasma treatment. Surf Interface Anal. 2001;31(5):385–96.

    Article  CAS  Google Scholar 

  7. Yasuda H. Plasma polymerization. London: Academic Press; 1985.

    Google Scholar 

  8. Beck AJ, Jones FR, Short RD. Plasma copolymerization as a route to the fabrication of new surfaces with controlled amounts of specific chemical functionality. Polymer. 1996;37(24):5537–9. doi:10.1016/s0032-3861(96)00479-x.

    Article  CAS  Google Scholar 

  9. Whittle JD, Short RD, Douglas CWI, Davies J. Differences in the aging of allyl alcohol, acrylic acid, allylamine, and octa-1,7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chem Mater. 2000;12(9):2664–71. doi:10.1021/cm0002158.

    Article  CAS  Google Scholar 

  10. France RM, Short RD, Dawson RA, Macneil S. Attachment of human keratinocytes to plasma co-polymers of acrylic acid/octa-1,7-diene and allyl amine/octa-1,7-diene. J Mater Chem. 1998;8(1):37–42.

    Article  CAS  Google Scholar 

  11. Harsch A, Calderon J, Timmons RB, Gross GW. Pulsed plasma deposition of allylamine on polysiloxane: a stable surface for neuronal cell adhesion. J Neurosci Methods. 2000;98(2):135–44. doi:10.1016/s0165-0270(00)00196-5.

    Article  CAS  Google Scholar 

  12. France RM, Short RD, Duval E, Jones FR, Dawson RA, MacNeil S. Plasma copolymerization of allyl alcohol/1,7-octadiene: surface characterization and attachment of human keratinocytes. Chem Mat. 1998;10(4):1176–83. doi:101021/cm970761+.

    Article  CAS  Google Scholar 

  13. France RM, Short RD. Plasma treatment of polymers: the effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir. 1998;14(17):4827–35.

    Article  CAS  Google Scholar 

  14. Wells N, Baxter MA, Turnbull JE, Murray P, Edgar D, Parry KL, et al. The geometric control of E14 and R1 mouse embryonic stem cell pluripotency by plasma polymer surface chemical gradients. Biomaterials. 2009;30(6):1066–70. doi:10.1016/j.biomaterials.2008.10.027.

    Article  CAS  Google Scholar 

  15. Bullett NA, Whittle JD, Short RD, Douglas CWI. Adsorption of immunoglobulin G to plasma-co-polymer surfaces of acrylic acid and 1,7-octadiene. J Mater Chem. 2003;13(7):1546–53.

    Article  CAS  Google Scholar 

  16. Barton D, Bradley JW, Steele DA, Short RD. Investigating radio frequency plasmas used for the modification of polymer surfaces. J Phys Chem B. 1999;103(21):4423–30.

    Article  CAS  Google Scholar 

  17. Candan S, Beck AJ, O’Toole L, Short RD. Effects of “processing parameters” in plasma deposition: acrylic acid revisited. J Vac Sci Technol A Vac Surf Films. 1998;16(3):1702–9. doi:10.1116/1.581288.

    Article  CAS  Google Scholar 

  18. Beamson G, Briggs D. High resolution XPS of organic polymers: the scienta ESCA300 database. J Chem Educ. 1993;70(1):A25. doi:10.1021/ed070pA25.5.

    Google Scholar 

  19. Whittle JD, Bullett NA, Short RD, Ian Douglas CW, Hollander AP, Davies J. Adsorption of vitronectin, collagen and immunoglobulin-G to plasma polymer surfaces by enzyme linked immunosorbent assay (ELISA). J Mater Chem. 2002;12(9):2726–32.

    Article  CAS  Google Scholar 

  20. Alexander MR, Duc TM. The chemistry of deposits formed from acrylic acid plasmas. J Mater Chem. 1998;8(4):937–43.

    Article  Google Scholar 

  21. Gengenbach TR, Vasic ZR, Chatelier RC, Griesser HJ. Multi-technique study of the spontaneous oxidation of n-hexane plasma polymers. J Polym Sci Part A Polym Chem. 1994;32(8):1399–414. doi:10.1002/pola.1994.080320801.

    Article  CAS  Google Scholar 

  22. Daw R, Brook IM, Devlin AJ, Short RD, Cooper E, Leggett GJ. A comparative study of cell attachment to self assembled monolayers and plasma polymers. J Mater Chem. 1998;8(12):2583–4.

    Article  CAS  Google Scholar 

  23. Haddow DB, France RM, Short RD, MacNeil S, Dawson RA, Leggett GJ, et al. Comparison of proliferation and growth of human keratinocytes on plasma copolymers of acrylic acid/1,7-octadiene and self-assembled monolayers. J Biomed Mater Res. 1999;47(3):379–87.

    Article  CAS  Google Scholar 

  24. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1996;62(2):155–69.

    Article  CAS  Google Scholar 

  25. Campochiaro PA, Hackett SF, Conway BP. Retinoic acid promotes density-dependent growth arrest in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1991;32(1):65–72.

    CAS  Google Scholar 

  26. Yasunari T, Yanagihara N, Komatsu T, Moriwaki M, Shiraki K, Miki T, et al. Effect of retinoic acid on proliferation and polyamine metabolism in cultured bovine retinal pigment epithelial cells. Ophthalmic Res. 1999;31(1):24–32. doi:10.1159/000055509.

    Article  CAS  Google Scholar 

  27. Underwood PA, Bennett FA. A comparison of the biological activities of the cell-adhesive proteins vitronectin and fibronectin. J Cell Sci. 1989;93(4):641–9.

    CAS  Google Scholar 

  28. Steele JG, Dalton BA, Johnson G, Underwood PA. Adsorption of fibronectin and vitronectin onto Primaria® and tissue culture polystyrene and relationship to the mechanism of initial attachment of human vein endothelial cells and BHK-21 fibroblasts. Biomaterials. 1995;16(14):1057–67. doi:10.1016/0142-9612(95)98901-p.

    Article  CAS  Google Scholar 

  29. Curtis ASG, Forrester JV. The competitive effects of serum proteins on cell adhesion. J Cell Sci. 1984;71:17–35.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearns, V., Mistry, A., Mason, S. et al. Plasma polymer coatings to aid retinal pigment epithelial growth for transplantation in the treatment of age related macular degeneration. J Mater Sci: Mater Med 23, 2013–2021 (2012). https://doi.org/10.1007/s10856-012-4675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4675-6

Keywords

Navigation