Skip to main content
Log in

Electrospinning collagen and hyaluronic acid nanofiber meshes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Collagen and hyaluronic acid (HA) are main components of the extracellular matrix and have been utilized in electrospinning; a technique that creates nanosized fibers for tissue scaffolds. A collagen/HA polymer solution was electrospun into a scaffold material for osteoporosis patients who have reduced bone strength. To synthesize nanofibers, a high voltage was applied to the polymer solution to draw out nanofibers that were collected on a ground plate as a uniform mesh. The meshes were then crosslinked to render them insoluble and conjugated with gold nanoparticles to promote biocompatibility. Characterization of the mesh was performed using scanning electron microscope, electron dispersive spectroscopy and fourier transform infrared spectroscopy. A WST-1 assay determined the potential biocompatibility. The results show that collagen/HA scaffolds were developed that were insoluble in aqueous solutions and promoted cellular attachment that could be used as a tissue engineered scaffold to promote cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO. WHO scientific group on the assessment of osteoporosis at primary health care level. World Health Organization Technical Report Series. 2004:1–17.

  2. Hosoi T. Genetic aspects of osteoporosis. J Bone Miner Metab. 2010;28(6):601–7.

    Article  CAS  Google Scholar 

  3. Kaveh K, Ibrahim R, Emadi M, Bakar MZA, Ibrahim TA. Osteoporosis and bone health. J Anim Vet Adv. 2010;9(6):1048–54.

    Article  CAS  Google Scholar 

  4. Ritchie RO. How does human bone resist fracture? Ann NY Acad Sci. 2010;1192:72–80.

    Article  Google Scholar 

  5. Cleland JGF, Witte K, Steel S. Calcium supplements in people with osteoporosis. BMJ. 2010;341(7767):260.

    CAS  Google Scholar 

  6. Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23(4):1205–12. doi:10.1016/s0142-9612(01)00235-6.

    Article  CAS  Google Scholar 

  7. Wang TW, Spector M. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 2009;5(7):2371–84. doi:10.1016/j.actbio.2009.03.033.

    Article  CAS  Google Scholar 

  8. Liu Y, Ma G, Fang D, Xu J, Zhang H, Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr Polym. 2011;83(2):1011–5. doi:10.1016/j.carbpol.2010.08.061.

    Article  CAS  Google Scholar 

  9. Greiner A, Wendorff JH, Yarin AL, Zussman E. Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol. 2006;71(4):387–93.

    Article  CAS  Google Scholar 

  10. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C. 2007;27(3):504–9.

    Article  CAS  Google Scholar 

  11. Bai J, Li Y, Yang S, Du J, Wang S, Zheng J, et al. A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Commun. 2007;141(5):292–5.

    Article  CAS  Google Scholar 

  12. Cui W, Li X, Zhou S, Weng J. Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci. 2007;103(5):3105–12.

    Article  CAS  Google Scholar 

  13. Shin YM, Hogman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer. 2001;42(25):9955–67.

    Article  CAS  Google Scholar 

  14. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  CAS  Google Scholar 

  15. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. World Scientific Publishing;2005.

  16. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26(36):7606–15.

    Article  CAS  Google Scholar 

  17. Kim TG, Park TG. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog. 2006;22(4):1108–13.

    Article  CAS  Google Scholar 

  18. Vassalli T. Development of electrospun synthetic bioabsorbable fibers for a novel bionanocomposite ernia repair material. University of Missouri Master’s Thesis. 2008.

  19. Kim TG, Chung HJ, Park TG. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 2008;4(6):1611–9. doi:10.1016/j.actbio.2008.06.008.

    Article  CAS  Google Scholar 

  20. Tan W, Twomey J, Guo D, Madhavan K, Li M. Evaluation of nanostructural, mechanical, and biological properties of collagennanotube composites. IEEE Trans Nanobiosci. 2010;9(2):111–20. doi:10.1109/tnb.2010.2043367.

    Article  CAS  Google Scholar 

  21. Hsu FY, Hung YS, Liou HM, Shen CH. Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomater. 2010;6(6):2140–7.

    Article  CAS  Google Scholar 

  22. Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer. 2009;50(15):3778–85. doi:10.1016/j.polymer.2009.05.035.

    Article  CAS  Google Scholar 

  23. Homenick CM, Sheardown H, Adronov A. Reinforcement of collagen with covalently-functionalized single-walled carbon nanotube crosslinkers. J Mater Chem. 2010;20(14):2887–94. doi:10.1039/b925799c.

    Article  CAS  Google Scholar 

  24. Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials. 2006;27(20):3782–92. doi:10.1016/j.biomaterials.2006.02.037.

    Article  CAS  Google Scholar 

  25. Cozad MJ, Bachman SL, Grant SA. Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing. J Biomed Mater Res Part A. 2011;99A(3):426–34.

    Article  CAS  Google Scholar 

  26. Whelove O. Development of gold nanoparticle conjugated polyethylene terephthalate for improved biocompatibility in hernia repair. University of Missouri Master’s Thesis. 2010.

  27. Deeken CR, Fox DB, Bachman SL, Ramshaw BJ, Grant SA. Characterization of bonanocomposite scaffolds comprised on amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon. J Biomed Mater Res Part B Appl Biomater. 2011;97(B(2)):334–44.

    Article  Google Scholar 

  28. Barnes CP, Pemble CW IV, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13(7):1593–605. doi:10.1089/ten.2006.0292.

    Article  CAS  Google Scholar 

  29. Chemblink. Online Database of Chemicals from Around the World. 2011. www.chemblink.com. Accessed 10/8/2011.

  30. Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811–8.

    Article  CAS  Google Scholar 

  31. Camacho NP, West P, Torzilli PA, Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers. 2001;62(1):1–8.

    Article  CAS  Google Scholar 

  32. Liu KZ, Jackson M, Sowa MG, Ju HS, Dixon IMC, Mantsch HH. Modification of the extracellular matrix following myocardial infraction monitored by FTIR spectroscopy. Biochim Biophys Acta. 2006;1335(2):73–7.

    Google Scholar 

  33. Boskey A, Camacho NP. FT-IR imaging of native and tissue- engineered bone and cartilage. Biomaterials. 2007;28(15):2465–78.

    Article  CAS  Google Scholar 

  34. Muyonga JH, Cole CGB, Duodu KG. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile Perch. Food Chem. 2004;86(3):325–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the University of Missouri and the BICAM (Biomaterials Innovation, Characterization, and Analysis of Missouri) laboratory. The authors would like to thank Dr. Mohamed Khalid, Assistant Professor of Orthopedic Surgery at the University of Missouri, for developing the concept for this project, and the University of Missouri Electron Microscopy Core for assistance with the imaging in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila A. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, R.L., McCoy, M.G. & Grant, S.A. Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci: Mater Med 23, 1645–1654 (2012). https://doi.org/10.1007/s10856-012-4641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4641-3

Keywords

Navigation