Skip to main content

Advertisement

Log in

Injection of calcium phosphate pastes: prediction of injection force and comparison with experiments

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium phosphate ceramics suspensions (ICPCS) are used in bone and dental surgery as injectable bone substitutes. This ICPCS biomaterial associates biphasic calcium phosphate (BCP) granules with hydroxypropylmethylcellulose (HPMC) polymer. Different ICPCS were prepared and their rheological properties were evaluated in parallel disks geometry as a function of the BCP weight ratio (35, 40, 45 and 50 %). The suspensions show a strongly increased viscosity as compared to the suspending fluid and the high shear rate part of the flow curve can be fitted with a power law model (Ostwald-de Waele model). The fitting parameters depend on the composition of the suspension. A simple device has been used to characterize extrusion of the paste using a disposable syringe fitted with a needle. The injection pressure of four ICPCS formulations was studied under various conditions (needle length and radius and volumetric flow rate), yielding an important set of data. A theoretical approach based on the capillary flow of non-Newtonian fluids was used to predict the necessary pressure for injection, on the basis of flow curves and extrusion conditions. The extrusion pressure calculated from rheological data shows a quantitative agreement with the experimental one for model fluids (Newtonian and HPMC solution) but also for the suspension, when needles with sufficiently large diameters as compared to the size of particles, are used. Depletion and possibly wall slip is encountered in the suspensions when narrower diameters are used, so that the injection pressure is less than that anticipated. However a constant proportionality factor exists between theory and injection experiments. The approach developed in this study can be used to correlate the rheological parameters to the necessary pressure for injection and defines the pertinent experimental conditions to obtain a quantitative agreement between theory and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29(9):1177–88.

    Article  CAS  Google Scholar 

  2. Jegoux F, Goyenvalle E, Cognet R, Malard O, Moreau F, Daculsi G, et al. Mandibular segmental defect regenerated with macroporous biphasic calcium phosphate, collagen membrane, and bone marrow graft in dogs. Arch Otolaryngol Head Neck Surg. 2010;136(10):971–8.

    Article  Google Scholar 

  3. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials. 2007;28(22):3295–305.

    Article  CAS  Google Scholar 

  4. Daculsi G, Chappard D, Aguado E, Legeay G, Layrolle P, Weiss P. Multiphasic biomaterials: a concept for bone substitutes developed in the “Pays de la Loire”. Key Eng Mater. 2008;361–363:17–21.

    Google Scholar 

  5. Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G. Injectable bone substitute using a hydrophilic polymer. Bone. 1999;25(2 Suppl):67S–70S.

    Article  CAS  Google Scholar 

  6. Bosco J, Fatimi A, Quillard S, Bouler JM, Weiss P. Rheological properties of an injectable bioactive calcium phosphate material. Key Eng Mater. 2007;330–332:847–50.

    Article  Google Scholar 

  7. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19(16):1473–8.

    Article  CAS  Google Scholar 

  8. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989;23(8):883–94.

    Article  CAS  Google Scholar 

  9. Sarkar N, Walker LC. Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym. 1995;27:177–85.

    Article  CAS  Google Scholar 

  10. Haque A, Richardson RK, Morris ER, Gidley MJ, Caswell DC. Thermogelation of methylcellulose. Part II: Effect of hydroxypropyl substituents. Carbohydr Polym. 1993;22:175–86.

    Article  CAS  Google Scholar 

  11. Haque A, Morris ER. Thermogelation of methylcellulose. Part I: Molecular structures and processes. Carbohydr Polym. 1993;22:161–73.

    Article  CAS  Google Scholar 

  12. Hirrien M, Chevillard C, Desbrieres J, Axelos MAV, Rinaudo M. Thermogelation of methylcellulose: new evidence for understanding the gelation mechanism. Polymer. 1998;39(25):6251–9.

    Article  CAS  Google Scholar 

  13. Fatimi A, Tassin JF, Quillard S, Axelos MAV, Weiss P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials. 2008;29(5):533–43.

    Article  CAS  Google Scholar 

  14. Fatimi A, Tassin JF, Turczyn R, Axelos MA, Weiss P. Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta Biomater. 2009;5(9):3423–32.

    Article  CAS  Google Scholar 

  15. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26(13):1553–63.

    Article  CAS  Google Scholar 

  16. Khairoun I, Driessens FC, Boltong MG, Planell JA, Wenz R. Addition of cohesion promotors to calcium phosphate cements. Biomaterials. 1999;20(4):393–8.

    Article  CAS  Google Scholar 

  17. Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25(2 Suppl):31S–4S.

    Article  CAS  Google Scholar 

  18. Qi X, Ye J. Mechanical and rheological properties and injectability of calcium phosphate cement containing poly (lactic-co-glycolic acid) microspheres. Mater Sci Eng C. 2009;29(6):1901–6.

    Article  CAS  Google Scholar 

  19. Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater. 2007;81(2):410–8.

    Google Scholar 

  20. Wang H, Wang XP, Ye JD, Wang YJ, Rao PG. Rheological properties and injectability of a calcium phosphate bone substitute material. Key Eng Mater. 2005;288–289:557–60.

    Google Scholar 

  21. Khairoun I, Boltong MG, Driessens FC, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med. 1998;9(8):425–8.

    Article  CAS  Google Scholar 

  22. Sarda S, Fernandez E, Llorens J, Martinez S, Nilsson M, Planell JA. Rheological properties of an apatitic bone cement during initial setting. J Mater Sci Mater Med. 2001;12(10–12):905–9.

    Article  CAS  Google Scholar 

  23. Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials. 2004;25(11):2197–203.

    Article  CAS  Google Scholar 

  24. Habib M, Baroud G, Gitzhofer F, Bohner M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008;4(5):1465–71.

    Article  CAS  Google Scholar 

  25. Wang X, Ye J, Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J Biomed Mater Res B Appl Biomater. 2006;78(2):259–64.

    Google Scholar 

  26. Ratier A, Freche M, Lacout JL, Rodriguez F. Behaviour of an injectable calcium phosphate cement with added tetracycline. Int J Pharm. 2004;274(1–2):261–8.

    Article  CAS  Google Scholar 

  27. Bouler JM, LeGeros RZ, Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/beta-TCP ratio. J Biomed Mater Res. 2000;51(4):680–4.

    Article  CAS  Google Scholar 

  28. Weiss P, Bohic S, Lapkowski M, Daculsi G. Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery. J Biomed Mater Res. 1998;41(1):167–70.

    Article  CAS  Google Scholar 

  29. Cross MM. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci. 1965;20:417–26.

    Article  CAS  Google Scholar 

  30. Macosko CW. Rheology: principles, measurements and applications. New York: Wiley; 1994.

    Google Scholar 

  31. Bujake JEJ. Rheology of concentrated dicalcium phosphate suspensions. J Pharm Sci. 1965;54(11):1599–604.

    Article  CAS  Google Scholar 

  32. Rabinowitsch B. The viscosity and elasticity of sols. Zeitschrift für physikalische Chemie. 1929;145(A):1–26.

    Google Scholar 

  33. Chang C, Powell RL. Effect of particle size distributions on the rheology of concentrated bimodal suspensions. J Rheol. 1994;38(1):85–98.

    Article  CAS  Google Scholar 

  34. Dorozhkin SV. Is there a chemical interaction between calcium phosphates and hydroxypropylmethylcellulose (HPMC) in organic/inorganic composites? J Biomed Mater Res. 2001;54(2):247–55.

    Article  CAS  Google Scholar 

  35. Fatimi A, Tassin JF, Axelos MAV, Weiss P. Sedimentation study of biphasic calcium phosphate particl. Key Eng Mater. 2008;361–363(Part 1):365–8.

    Article  Google Scholar 

  36. Fatimi A, Tassin JF, Axelos MA, Weiss P. The stability mechanisms of an injectable calcium phosphate ceramic suspension. J Mater Sci Mater Med. 2010;21(6):1799–809.

    Article  CAS  Google Scholar 

  37. Bagley EB. End corrections in the capillary flow of polyethylene. J Appl Phys. 1957;28(5):624–7.

    Article  CAS  Google Scholar 

  38. Mooney M. Explicit formulas for slip and fluidity. J Rheol. 1931;2(2):210–22.

    Article  CAS  Google Scholar 

  39. Geiger K. Rheologische charakterisierung von EPDM kautschukmischungen mittels kapillar-rheometer systemen. Kautsch Gummi Kunstst. 1989;42:273–83.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the regional program BIOREGOS (Région Pays de la Loire, France). Authors extend their sincere thanks to Colorcon® for the supply of the polymer Methocel E4M. The help of Paul Pilet for the image observations and Jean-Michel Bouler for the BCP preparations is acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatimi, A., Tassin, JF., Bosco, J. et al. Injection of calcium phosphate pastes: prediction of injection force and comparison with experiments. J Mater Sci: Mater Med 23, 1593–1603 (2012). https://doi.org/10.1007/s10856-012-4640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4640-4

Keywords

Profiles

  1. Ahmed Fatimi