Skip to main content
Log in

Ultrasound monitoring of the setting of calcium-based bone cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, the setting of calcium-sulphate (CS) and -phosphate (CP) based bone cements (BCs) was monitored by ultrasound. The objective was to link acoustic and material properties of ceramic-based BCs from the early stages of the cement curing process. The powder phase of the CS-cement consisted of CS hemihydrate; the CP-cement was a mixture of alpha-tricalcium phosphate, CS dihydrate and hydroxyapatite. For the CS-cement, the acoustic impedance z c(t), the speed of sound c c(t) and the density ρc(t) were measured at the interval of liquid-to-powder ratios LPRs from 0.20 to 3.00 ml/g. For the CP-cement, the acoustic characteristics obtained were the z c(t) and the reflection coefficient R p,c(t), and the LPRs ranged from 0.30 to 0.40 ml/g. The resulting acoustic properties indicated that CP- and CS-cements exhibited distinctly different curing behaviour; while CS-cement expanded, CP-cement shrank with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee KI, Humphrey VF, Leighton TG, Yoon SW. Predictions of the modified Biot–Attenborough model for the dependence of phase velocity on porosity in cancellous bone. Ultrasonics. 2007;46:323–30. doi:10.1016/j.ultras.2007.01.012.

    Article  Google Scholar 

  2. Kaczmarek M, Pakula M, Kubik J. Multiphase nature and structure of biomaterials studied by ultrasounds. Ultrasonics. 2000;38:703–7. doi:10.1016/S0041-624X(99)00131-6.

    Article  CAS  Google Scholar 

  3. Berriman J, Purnell P, Hutchins DA, Neild A. Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete. Ultrasonics. 2005;43:211–7. doi:10.1016/j.ultras.2004.07.003.

    Article  CAS  Google Scholar 

  4. Philippidis TP, Aggelis DG. Experimental study of wave dispersion and attenuation in concrete. Ultrasonics. 2005;43:584–95. doi:10.1016/j.ultras.2004.12.001.

    Article  CAS  Google Scholar 

  5. Lee HK, Lee KM, Kim YH, Yim H, Bae DB. Ultrasonic in situ monitoring of setting process of high-performance concrete. Cem Concr Res. 2004;34:631–40. doi:10.1016/j.cemconres.2003.10.012.

    Article  CAS  Google Scholar 

  6. Del Río LM, Jiménez A, López F, Rosa FJ, Rufo MM, Paniagua JM. Characterisation and hardening of concrete with ultrasonic testing. Ultrasonics. 2004;42:527–30. doi:10.1016/j.ultras.2004.01.053.

    Article  Google Scholar 

  7. Viano AM, Auwarter JA, Rho JY, Hoffmeister BK. Ultrasonic characterization of the curing process of hydroxyapatite-modified bone cement. J Biomed Mater Res. 2001;56:593–9.

    Article  CAS  Google Scholar 

  8. Wu HC, Shen FW, Hong X, Chang WV, Winet H. Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique. Biomaterials. 2003;24:3871–6. doi:10.1016/S0142-9612(03)00135-2.

    Article  CAS  Google Scholar 

  9. Abdulghani S, Nazhat SN, Behiri JC, Deb S. Effect of triphenyl bismuth on glass transition temperature and residual monomer content of acrylic bone cements. J Biomater Sci Polym Ed. 2003;14:1229–42. doi:10.1163/156856203322553455.

    Article  CAS  Google Scholar 

  10. Brunner TJ, Bohner M, Dora C, Gerber C, Stark WJ. Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements. J Biomed Mater Res Part B Appl Biomater. 2007;83B:400–7. doi:10.1002/jbm.b.30809.

    Article  CAS  Google Scholar 

  11. Liu C, Gai W, Pan S, Liu Z. The exothermal behaviour in the hydration process of calcium phosphate cement. Biomaterials. 2003;24:2995–3003. doi:10.1016/S0142-9612(03)00125-X.

    Article  CAS  Google Scholar 

  12. Lemaitre J. Injectable calcium phosphate hydraulic cements: new developments and potential applications. Innov Technol Biol Med. 1995;16(1):109–20.

    Google Scholar 

  13. Standard test method for time of setting of hydraulic cement paste by the Gillmore needles, ASTM C266-89. Annual book of ASTM standards. Cement, lime, gypsum. vol. 04.01. Philadelphia: ASTM; 1993. p. 189–191.

  14. Khairoun I, Boltong MG, Driessens FCM, Planell JA. Limited compliance of some apatitic calcium phosphate bone cements with clinical requirements. J Mater Sci Mater Med. 1998;9:667–71. doi:10.1023/A:1008939710282.

    Article  CAS  Google Scholar 

  15. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J Biomed Mater Res Appl Biomater. 2006;76B(2):456–68. doi:10.1002/jbm.b.30398.

    Article  CAS  Google Scholar 

  16. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9. doi:10.1016/j.biomaterials.2005.03.049.

    Article  CAS  Google Scholar 

  17. Fernández E. Bioactive bone cements. In: Akay M, editor. Wiley encyclopedia of biomedical engineering. 6-volume set. New York: Wiley; 2006. p. 1–9. doi:10.1002/9780471740360.ebs1367.

  18. Vlad MD, del Valle LJ, Barracó M, Torres R, López J, Fernández E. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Spine. 2008;33(21):2290–8. doi:10.1097/BRS.0b013e31817eccab.

    Article  Google Scholar 

  19. Song Y, Feng Z, Wang T. In situ study on the curing process of calcium phosphate bone cement. J Mater Sci Mater Med. 2007;18:1185–93. doi:10.1007/s10856-007-0138-x.

    Article  CAS  Google Scholar 

  20. Carlson J, Nilsson M, Fernández E, Planell JA. An ultrasonic pulse-echo technique for monitoring the setting of CaSO4-based bone cement. Biomaterials. 2003;24:71–7. doi:10.1016/S0142-9612(02)00253-3.

    Article  CAS  Google Scholar 

  21. Nilsson M, Carlson J, Fernández E, Planell JA. Monitoring the setting of calcium-based bone cements using pulse–echo ultrasound. J Mater Sci Mater Med. 2002;13(12):1135–41. doi:10.1023/A:1021181702807.

    Article  CAS  Google Scholar 

  22. Lewry AJ, Williamson J. The setting of gypsum plaster. J Mater Sci. 1994;29(23):6085–90. doi:10.1007/BF00354546.

    Article  CAS  Google Scholar 

  23. Kaye GWC, Laby TH. Tables of physical and chemical constants. London: Longman; 1995.

    Google Scholar 

  24. Wirsching F. Calcium sulphate. In: Ullmann’s encyclopedia of industrial chemistry. Fifth, completely revised edition, vol. A4: benzyl alcohol to calcium sulfate. VCH Publishers: Deerfield Beach; 1985. p. 555–84.

  25. Dalui SK, Roychowdhury M, Phani KK. Ultrasonic evaluation of gypsum plaster. J Mater Sci. 1996;31:1261–3. doi:10.1007/BF00353105.

    Article  CAS  Google Scholar 

  26. Sayers CM, Grenfell RL. Ultrasonic propagation through hydrating cements. Ultrasonics. 1993;31(3):147–53. doi:10.1016/0041-624X(93)90001-G.

    Article  CAS  Google Scholar 

  27. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26(13):1553–63. doi:10.1016/j.biomaterials.2004.05.010.

    Article  CAS  Google Scholar 

  28. Carlson JE, Taavitsainen VM. Ultrasonic measurement of the reaction kinetics of the setting of calcium sulfate cements using implicit calibration. J Chemom. 2008;. doi:10.1002/cem.1136.

    Google Scholar 

Download references

Acknowledgments

The authors thank public funding received for this work through project MAT2010-19431 (Ministerio de Ciencia e Innovación, Spain). J.E. Carlson would also like to thank the technical faculty at Luleå University of Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlad, M.D., González, L., Gómez, S. et al. Ultrasound monitoring of the setting of calcium-based bone cements. J Mater Sci: Mater Med 23, 1563–1568 (2012). https://doi.org/10.1007/s10856-012-4636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4636-0

Keywords

Navigation