Skip to main content

Advertisement

Log in

Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium alloys exhibit excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film, and some of these alloys (particularly Ti-6Al-7Nb) have been chosen for surgical and odontological implants for their resistance and biocompatibility. Treatment with fluorides (F) is known to be the main method for preventing plaque formation and dental caries. Toothpastes, mouthwashes, and prophylactic gels can contain from 200 to 20,000 ppm F and can affect the corrosion behaviour of titanium alloy devices present in the oral cavity. In this work, the electrochemical corrosion behaviour of Ti-1M alloys (M = Ag, Au, Pd, Pt) was assessed in artificial saliva of pH = 3.0 containing 910 ppm F (0.05 M NaF) through open circuit potential, EOC, and electrochemical impedance spectroscopy (EIS) measurements. The corrosion behaviour of the Ti-6Al-7Nb commercial alloy was also evaluated for comparison. E OC measurements show an active behaviour for all the titanium alloys in fluoridated acidified saliva due to the presence of significant concentrations of HF and HF2 species that dissolve the spontaneous air-formed oxide film giving rise to surface activation. However, an increase in stability of the passive oxide layer and consequently a decrease in surface activation is observed for the Ti-1M alloys. This behaviour is confirmed by EIS measurements. In fact, the Ti-6Al-7Nb alloy exhibits lower impedance values as compared with Ti-1M alloys, the highest values being measured for the Ti-1Au alloy. The experimental results show that the corrosion resistance of the studied Ti-1M alloys is similar to or better than that of Ti-6Al-7Nb alloy currently used as biomaterial, suggesting their potential for dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams DF. On the mechanism of biocompatibility. Biomaterials. 2008;29:2941–8.

    Article  CAS  Google Scholar 

  2. Bombac D, Brojan M, Fajfar P, Kosel F, Turk R. Review of materials in medical applications. RMZ Mater Geoenviron. 2007;54:471–9.

    CAS  Google Scholar 

  3. Hanawa T. Recent development of new alloys for biomedical use. Mater Sci Forum. 2006;512:243−7.

    Article  CAS  Google Scholar 

  4. Yamazoe J, Nakagawa M, Matono Y, Takeuki A. The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. Dent Mater J. 2007;26:260–7.

    Article  CAS  Google Scholar 

  5. Zhou YL, Niinomi M. Ti-25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Mater Sci Eng C. 2009;29:1061–6.

    Article  CAS  Google Scholar 

  6. Zhou YL, Niinomi M, Akahori T, Fukui H. Development of Ti–30 mass% Ta alloy for biomedical applications. Mater Sci Forum. 2005;475–479:2309–15.

    Article  Google Scholar 

  7. Zhou YL, Niinomi M. Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical application. J Alloys Compd. 2008;466:535–40.

    Article  CAS  Google Scholar 

  8. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β-type titanium alloys for implant materials. Mater Sci Eng A. 1998;243:244–51.

    Article  Google Scholar 

  9. Yao Q, Sun J, Xing H, Guo W. Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys. Trans Nonferrous Met Soc China. 2007;17:1417–21.

    Article  CAS  Google Scholar 

  10. Zhou YL, Niinomi M, Akahori T. Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Mater Sci Eng A. 2008;483–484:153–8.

    Google Scholar 

  11. Jablokov VR, Nutt MJ, Richelsoph ME, Freese HL. The application of Ti-15Mo beta titanium alloy in high strength structural orthopaedic applications. J ASTM Int. 2005;2:491–8.

    Google Scholar 

  12. Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci Mater Med. 2008;19:3179–85.

    Article  CAS  Google Scholar 

  13. Kim TI, Han JH, Lee IS, Lee KH, Shin MC, Choi BB. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Biomed Mater Eng. 1997;7:253–60.

    CAS  Google Scholar 

  14. Eisenbarth E, Velten D, Müller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–10.

    Article  CAS  Google Scholar 

  15. Braemer W. Biocompatibility of dental alloys. Adv Eng Mater. 2001;3:753–70.

    Article  CAS  Google Scholar 

  16. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–6.

    Article  Google Scholar 

  17. Zhou YL, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater Sci Eng A. 2004;371:283–8.

    Article  Google Scholar 

  18. Sittig C, Hähner G, Marti A, Textor M, Spencer ND. The implant material, Ti6Al7Nb: surface, microstructure, composition and properties. J Mater Sci Mater Med. 1999;10:191–8.

    Article  CAS  Google Scholar 

  19. Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J Mater Sci Mater Med. 1998;9:567–72.

    Article  CAS  Google Scholar 

  20. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–20.

    Article  CAS  Google Scholar 

  21. Zhou YL, Niinomi M, Akahori T, Fukui H, Toda H. Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Mater Sci Eng A. 2005;398:28–34.

    Article  Google Scholar 

  22. Trillo EA, Ortiz C, Dickerson P, Villa R, Stafford SW, Murr LE. Evaluation of mechanical and corrosion biocompatibility of Ti–Ta alloys. J Mater Sci Mater Med. 2001;12:283–90.

    Article  CAS  Google Scholar 

  23. Kumar S, Sankara Narayanan TSN. Corrosion behavior of Ti-15Mo alloy for dental implant applications. J Dent. 2008;36:500–5.

    Article  CAS  Google Scholar 

  24. Oliveira NTC, Guastaldi AC. Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros Sci. 2008;50:938–44.

    Article  CAS  Google Scholar 

  25. Oliveira NTC, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405.

    Article  CAS  Google Scholar 

  26. Godley R, Starosvetsky D, Gotman I. Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants. J Mater Sci Mater Med. 2006;17:63–9.

    Article  CAS  Google Scholar 

  27. Khan MA, Williams RL, Williams DF. The corrosion behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials. 1999;20:631–40.

    Article  CAS  Google Scholar 

  28. Okazaki Y, Ito Y, Kyo K, Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng A. 1996;213:138–44.

    Article  Google Scholar 

  29. Rao S, Okazaki Y, Tateishi T, Ushida T, Ito Y. Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3-E1 cells. Mater Sci Eng C. 1997;4:311–6.

    Article  Google Scholar 

  30. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–35.

    Article  CAS  Google Scholar 

  31. Lavos-Valereto IC, Wolynec S. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti-6Al-7Nb alloy in Hank’s solution. J Mater Sci Mater Med. 2004;15:55–60.

    Article  CAS  Google Scholar 

  32. Ikeda M, Komatsu SY, Sowa I, Niinomi M. The effect of tantalum content on phase constitution and aging behaviour of Ti-Ta binary allloys. Metall Mater Trans. 2002;33:487–91.

    Article  Google Scholar 

  33. Davidson JA, Mishra AK, Kovasc P, Poggie RA. New surface hardened, low modulus, corrosion resistant Ti-13Nb-13Zr alloy for total hip arthroplasty. Biomed Mater Eng. 1994;4:231–6.

    CAS  Google Scholar 

  34. Fischer J. Mechanical, thermal, and chemical analyses of the binary system Au-Ti in the development of a dental alloy. J Biomed Mater Res. 2000;52:678–86.

    Article  CAS  Google Scholar 

  35. Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti–Au, Ti–Ag, and Ti–Cu alloys. Dent Mater. 2006;22:641–6.

    Article  CAS  Google Scholar 

  36. Takahashi M, Kikuchi M, Takada Y, Okuno O. Grindability and mechanical properties of experimental Ti–Au, Ti–Ag and Ti–Cu alloys. Int Congr Series. 2005;1284:326–32.

    Article  CAS  Google Scholar 

  37. Cui CY, Ping DH. Microstructural evolution and ductility improvement of Ti–Pd alloys. J Alloys Compd. 2008;471:248–52.

    Article  Google Scholar 

  38. Kondo R, Suyalatu Y, Tsutsumi H, Doi N, Nomura N, Hanawa T. Microstructure and mechanical properties of Ti-Pt alloys. Mater Sci Eng C. 2010;31:900–6.

    Article  Google Scholar 

  39. Fernandez Lorenzo de Mele M, Cortizo C. Electrochemical behavior of titanium in fluoride-containing saliva. J Appl Electrochem. 2000;30:95–100.

    Article  Google Scholar 

  40. Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials. 2005;26:829–36.

    Article  CAS  Google Scholar 

  41. Noguchi T, Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Discoloration and dissolution of titanium and titanium alloys with immersion in peroxide-or fluoride-containing solutions. Dent Mater J. 2008;27:117–22.

    Article  CAS  Google Scholar 

  42. Rosifini Alves Rezende MC, Rosifini Alves AP, Codaro EN, Matsumoto Dutra CA. Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. J Mater Sci Mater Med. 2007;18:149–54.

    Article  Google Scholar 

  43. Matono Y, Nakagawa M, Ishikawa K, Terada Y. Effect of corrosion behavior of pure titanium and titanium alloy on fluoride addition in acidic environment by Streptococcus mutans. Prosthodont Res Pract. 2008;7:34–40.

    Article  Google Scholar 

  44. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA. Effect of potential on the corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Corr. 2004;53(2):88–93.

    Article  Google Scholar 

  45. Robin A, Meirelis JP. Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva. Mater Corr. 2007;58:173–9.

    Article  CAS  Google Scholar 

  46. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995–2001.

    Article  CAS  Google Scholar 

  47. Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Baslé MF, Chappard D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2:121–7.

    Article  CAS  Google Scholar 

  48. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. The effect of fluorides on the electrochemical behavior of Ti and some of its alloys for dental applications. Mater Corr. 2004;55:524–30.

    Article  CAS  Google Scholar 

  49. Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials. 1998;19:85–92.

    Article  CAS  Google Scholar 

  50. Huang HH. Electrochemical impedance spectroscopy study of strained titanium in fluoride media. Electrochim Acta. 2002;47:2311–6.

    Article  CAS  Google Scholar 

  51. Toumelin-Chemia F, Rouelle F, Burdairon G. Corrosive properties of fluoride-containing odontologic gels against titanium. J Dent. 1996;24:109–15.

    Article  Google Scholar 

  52. Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res. 1999;78:1568–73.

    Article  CAS  Google Scholar 

  53. Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20:305–11.

    Article  CAS  Google Scholar 

  54. Dillon CP. Behavior of reactive metals. Mater Perform. 1998;7:69–79.

    Google Scholar 

  55. Spurrier J, Scully JC. Fractographic aspects of the stress. Corrosion cracking of titanium in a methanol/HCl mixture. Corrosion. 1972;28:453–63.

    CAS  Google Scholar 

  56. Aitchison I, Cox B. Interpretation of fractographs of SCC in hexagonal metals. Corrosion. 1972;28:83–7.

    CAS  Google Scholar 

  57. Kononen MHO, Lavonius ET, Kivilahti K. SEM observations on stress corrosion cracking of commercially pure titanium in a topical fluoride solution. Dent Mater. 1995;11:269−75.

    Article  CAS  Google Scholar 

  58. Nakagawa M, Matono Y, Matsuya S, Udoh K, Ishikawa K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials. 2005;26:2239–46.

    Article  CAS  Google Scholar 

  59. Robert GC, O’Brien WJ, Powers JM. Dental materials: properties and manipulation. St. Louis: Mosby-Years Book; 1992.

    Google Scholar 

  60. Shim HM, Oh KT, Woo JY, Hwang CJ, Kim KN. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions. J Biomed Mater Res B. 2005;73:252–7.

    Google Scholar 

  61. Leyens C, Peters M. Titanium and titanium alloys—fundamentals and applications. New York: Academic Press; 1999.

    Google Scholar 

  62. ASM Handbook, vol. 2: nonferrous alloys and special-purpose materials. ASM International, Metals Park, 1993.

  63. Wagner CW, Traud W. On the interpretation of corrosion processes through superposition of electrochemical partial processes and on the potential of mixed electrodes. Z Electrochem. 1938;44:391.

    Google Scholar 

  64. Frateur I, Cattarin S, Musiani M, Tribollet B. Electrodissolution of Ti and p-Si in acidic fluoride media: formation ratio of oxide layers from electrochemical impedance spectroscopy. J Electroanal Chem. 2000;482:202–8.

    Article  CAS  Google Scholar 

  65. Cattarin S, Musiani M, Tribollet B. Electrodissolution of p-Si in acidic fluoride. Media modeling of the steady state. J Electrochem Soc. 2002;149:457–64.

    Article  Google Scholar 

  66. Elagli K, Traisnel M, Hildebrand HF. Electrochemical behaviour of titanium and dental alloys in artificial saliva. Electrochim Acta. 1993;38:1769–75.

    Article  CAS  Google Scholar 

  67. Fovet Y, Gal JY, Toumelin-Chemla F. Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide. Talanta. 2001;53:1053–8.

    Article  CAS  Google Scholar 

  68. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. New York: Pergamon Press; 1966.

    Google Scholar 

  69. Shukla AK, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions. Intermetallics. 2005;13:631–6.

    Article  CAS  Google Scholar 

  70. Gonzales JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109–15.

    Article  Google Scholar 

  71. Popa MV, Demetrescu I, Vasilescu E, Drob P, Mirza-Rosca AS, Vasilescu C, Ionita D. Corrosion susceptibility of implant materials Ti-5Al-4V and Ti-6Al-4Fe in artificial extra-cellular fluids. Electrochim Acta. 2004;49:2113–9.

    Article  CAS  Google Scholar 

  72. Aziz-Kerzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials. 2001;22:1531–9.

    Article  Google Scholar 

  73. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta. 1996;41:1143–50.

    Article  CAS  Google Scholar 

  74. Assis SL, Costa I. Electrochemical evaluation of Ti-13Nb-13Zr, Ti-6Al-4V and Ti-6Al-7Nb alloys for biomedical application by long-term immersion tests. Mater Corr. 2007;58:329–36.

    Article  CAS  Google Scholar 

  75. Ibris N, Mirza-Rosca JC. EIS study of Ti and its alloys in biological media. J Electroanal Chem. 2002;526:53–60.

    Article  CAS  Google Scholar 

  76. Azumi K, Yasui N, Seo M. Changes in the properties of anodic oxide films formed on titanium during long-term immersion in deaerated neutral solutions. Corros Sci. 2000;42:885–91.

    Article  CAS  Google Scholar 

  77. Gluszek J, Masalski J, Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials. 1997;18:789–94.

    Article  CAS  Google Scholar 

  78. Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–22.

    Article  Google Scholar 

  79. Gudic S, Radosevic J, Kliskic M. Study of passivation of Al and Al–Sn alloys in borate buffer solutions using electrochemical impedance spectroscopy. Electrochim Acta. 2002;47:3009–15.

    Article  CAS  Google Scholar 

  80. Souza MEP, Ballester M, Freire CMA. EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf Coat Technol. 2007;201:7775–80.

    Article  CAS  Google Scholar 

  81. Osorio WR, Spinelli JE, Ferreira IL, Garcia A. The roles of macrosegregation and of dendritic array spacings on the electrochemical behavior of an Al-4.5 wt% Cu alloy. Electrochim Acta. 2007;52:3265–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rosalbino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosalbino, F., Delsante, S., Borzone, G. et al. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J Mater Sci: Mater Med 23, 1129–1137 (2012). https://doi.org/10.1007/s10856-012-4591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4591-9

Keywords

Navigation