Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements

  • Kun V. Tian
  • Peter M. Nagy
  • Gregory A. Chass
  • Pal Fejerdy
  • John W. Nicholson
  • Imre G. Csizmadia
  • Csaba Dobó-Nagy
Article

Abstract

Discs of biocompatible glass ionomer cements were prepared for Hertzian indentation and subsequent fracture analyses. Specifically, 2 × 10 mm samples for reproducing bottom-initiated radial fracture, complemented by 0.2 × 1 mm samples for optimal resolution with X-ray micro tomography (μCT), maintaining dimensional ratio. The latter allowed for accurate determination of volumetric-porosity of the fully cured material, fracture-branching through three Cartesian axes and incomplete bottom-initiated cracking. Nanocomputed tomography analyses supported the reliability of the μCT results. Complementary 2-dimensional fractographic investigation was carried out by optical and scanning electron microscopies on the larger samples, identifying fracture characteristics. The combined 3-D qualitative assessment of microstructure and fractures, complemented by 2-D methods, provided an increased understanding of the mechanism of mechanical failure in these cements. Specifically, cracks grew to link pores while propagating along glass-matrix interfaces. The methodological development herein is exploitable on related biomaterials and represents a new tool for the rational characterisation, optimisation and design of novel materials for clinical service.

References

  1. 1.
    Crisp S, Wilson AD. Reactions in glass ionomer cements: I. Decomposition of the powder. J Dent Res. 1974;53:1408–13. doi:10.1177/00220345740530061901.CrossRefGoogle Scholar
  2. 2.
    Mount GJ. Color Atlas of Glass Ionomer Cements. 3rd ed. London: Dunitz; 2002.Google Scholar
  3. 3.
    Nicholson JW. Glass ionomer dental cements: update. Mater Tech Adv Perf Mater. 2010;25:8–13. doi:10.1179/175355509X12614966220506.Google Scholar
  4. 4.
    Jonck LM, Grobbelaar CJ, Strating H. Biological evaluation of glass-ionomer cement (Ketac-O) as an interface material in total joint replacement: a screening test. Clin Mater. 1989;4:201–24. doi:10.1016/0267-6605(89)90030-9.CrossRefGoogle Scholar
  5. 5.
    Brook IM, Hatton PV. Glass-ionomers: bioactive implant materials. Biomater. 1998;19:565–71. doi:10.1016/S0142-9612(98)00138-0.CrossRefGoogle Scholar
  6. 6.
    Bauer M, Pytel J, Vona I, Gerlinger I. Combination of ionomer cement and bone graft for ossicular reconstruction. Eur Arch Otorhinolaryngology. 2007;264:1267–73. doi:10.1007/s00405-007-0367-0.CrossRefGoogle Scholar
  7. 7.
    Hehl K, Schumann K, Beck C, Schottle W. Middle-ear surgery–glass ionomer cement at the incudostapedial joint. Laryngorhinootologie. 1989;68:490–2. doi:10.1055/s-2007-998383.CrossRefGoogle Scholar
  8. 8.
    Dicks F, Zollner W. Practicability of glass ionomer cement for veterinary dental practice. Praktische Tierarzt. 1988;69:32–6.Google Scholar
  9. 9.
    Vujaskovic M, Karadzic B, Bacetic D. Histopathology of subcutaneous tissue reaction to endodontic root canal sealers. Acta Veterinaria (Beograd). 2011;61:327–36. doi:10.2298/AVB1103327V.CrossRefGoogle Scholar
  10. 10.
    Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14(sp. issue):3–9. doi:10.1590/S1678-77572006000700002.Google Scholar
  11. 11.
    Ten Cate JM, van Duinen RNB. Hypermineralization of dentinal lesions adjacent to glass-ionomer cement restorations. J Dent Res. 1995;74:1266–71. doi:10.1177/00220345950740060501.CrossRefGoogle Scholar
  12. 12.
    Hotz P, McLean JW, Sced I, Wilson AD. The bonding of glass-ionomer cements to metal and tooth substrates. Brit Dent J. 1977;142:41–7. doi:10.1038/sj.bdj.4803864.CrossRefGoogle Scholar
  13. 13.
    Powis DR, Folleras T, Merson SA, Wilson AD. Improved adhesion of a glass ionomer cement to dentin and enamel. J Dent Res. 1982;61:1416–22.CrossRefGoogle Scholar
  14. 14.
    McLean JW, Wilson AD. The clinical development of the glass-ionomer cements. I. Formulations and properties. Aus Dent J. 1977;22:31–6. doi:10.1111/j.1834-7819.1977.tb04441.x.CrossRefGoogle Scholar
  15. 15.
    McCabe JF, Yan ZQ, Al Naimi OT, Mahmoud G, Rolland SL. Smart materials in dentistry–future prospects. Dent Mater J. 2009;28:37–43. doi:10.4012/dmj.28.37.CrossRefGoogle Scholar
  16. 16.
    McLean JW, Wilson AD. The clinical development of the glass-ionomer cement. II. Some clinical applications. Aus Dent J. 1977;22:120–7. doi:10.1111/j.1834-7819.1977.tb04463.x.CrossRefGoogle Scholar
  17. 17.
    Lloyd CH, Mitchell L. The fracture toughness of tooth coloured restorative materials. J Oral Rehabil. 1984;11:257–72. doi:10.1111/j.1365-2842.1984.tb00575.x.CrossRefGoogle Scholar
  18. 18.
    Crisp S, Pringuer MA, Wardleworth D, Wilson AD. Reactions in glass-ionomer cements: II An infrared spectroscopic study. J Dent Res. 1974;53:1414–9. doi:10.1177/00220345740530062001.CrossRefGoogle Scholar
  19. 19.
    Crisp S, Wilson AD. Reactions in glass-ionomer cements: III. The precipitation reaction. J Dent Res. 1974;53:1420–4. doi:10.1177/00220345740530062101.CrossRefGoogle Scholar
  20. 20.
    Wasson EA, Nicholson JW. New aspects of the setting of glass-ionomer cements. J Dent Res. 1993;72:481–3. doi:10.1177/00220345930720020201.CrossRefGoogle Scholar
  21. 21.
    Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomater. 1998;19:485–94. doi:10.1016/S0142-9612(97)00128-2.CrossRefGoogle Scholar
  22. 22.
    Stamboulis A, Law RV, Hill RG. Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomater. 2004;25:3907–13. doi:10.1016/j.biomaterials.2003.10.074.CrossRefGoogle Scholar
  23. 23.
    Culbertson BM. New polymeric materials for use in glass-ionomer cements. J Dent. 2006;34:556–65. doi:10.1016/j.jdent.2005.08.008.CrossRefGoogle Scholar
  24. 24.
    Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999;81:652–61. doi:10.1016/S0022-3913(99)70103-4.CrossRefGoogle Scholar
  25. 25.
    Wang Y, Darvell BW. Failure mode of dental restorative materials under Hertzian indentation. Dent Mater. 2007;23:1236–44. doi:10.1016/j.dental.2006.11.016.CrossRefGoogle Scholar
  26. 26.
    Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 3. Effect of polyacid concentration on the physical properties. J Dent. 1977;5:51–6. doi:10.1016/S0300-5712(77)80025-0.CrossRefGoogle Scholar
  27. 27.
    Hill RG, Wilson AD, Warrens CP. The influence of poly (acrylic acid) molecular weight on the fracture toughness of glass-ionomer cements. J Mater Sci. 1989;24:363–71. doi:10.1007/BF00660982.CrossRefGoogle Scholar
  28. 28.
    Kajiwara M. Formation and compressive strength of the ionomer cements prepared from aluminosilicate glass and poly (acrylic acid). J Mater Sci Lett. 1984;3:617–9. doi:10.1007/BF00719627.CrossRefGoogle Scholar
  29. 29.
    Quinn JB, Quinn GD. Material properties and fractography of an indirect dental resin composite. Dent Mater. 2010;26:589–99. doi:10.1016/j.dental.2010.02.008.CrossRefGoogle Scholar
  30. 30.
    Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (K IC) of a dental porcelain determined by fractographic analysis. Dent Mater. 1999;15:342–8. doi:10.1016/S0109-5641(99)00055-X.CrossRefGoogle Scholar
  31. 31.
    Landis EN, Nagy EN, Keane DT. Microstructure and fracture in three dimensions. Eng Fract Mech. 2003;70:911–25. doi:10.1016/S0013-7944(02)00157-1.CrossRefGoogle Scholar
  32. 32.
    Sinnett-Jones PE, Browne M, Ludwig W, Buffiere JY, Sinclair I. Microtomography assessment of failure in acrylic bone cement. Biomater. 2005;26:6460–6. doi:10.1016/j.biomaterials.2005.04.064.CrossRefGoogle Scholar
  33. 33.
    Wang Y, Darvell BW. Interactive effect of indenter size and sample thickness in Hertzian indentation test. Dent Mater. 2010;26:539–44. doi:10.1016/j.dental.2010.02.001.CrossRefGoogle Scholar
  34. 34.
    Bontaz-Carion J, Pellegrini YP. X-ray microtomography analysis of dynamic damage in tantalum. Adv Eng Mater. 2006;8:480–6. doi:10.1002/adem.200600058.CrossRefGoogle Scholar
  35. 35.
    Nomoto R, Komoriyama M, McCabe JF, Hirano S. Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dent Mater. 2004;20:972–8. doi:10.1016/j.dental.2004.03.001.CrossRefGoogle Scholar
  36. 36.
    Deb S, Shah P, Vazquez B, San Roman J. A novel acrylic copolymer for a poly(alkenoate) glass-ionomer cement. J Mater Sci Mater Med. 2003;14:575–81. doi:10.1023/A:1024062705439.CrossRefGoogle Scholar
  37. 37.
    Landis E, Keane DT. X-ray microtomography for fracture studies in cement-based materials. Development in X-ray Tomography II. Bonse (Ed.). Bellingham, WA. SPIE; 1999. SPIE Proc Vol 3772:105-113. Cited by Stock SR, Microcomputed tomography: methodology and applications. Boca Raton: CRC press; 2008.Google Scholar
  38. 38.
    Goldman M. Fracture properties of composite and glass ionomer dental restorative materials. J Biomed Mater Res. 1985;19:771–83. doi:10.1002/jbm.820190705.CrossRefGoogle Scholar
  39. 39.
    Hull D. Fractography: Observing, measuring and interpreting fracture surface topography. Cambridge: University Press; 1999. p. 121–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kun V. Tian
    • 1
    • 2
    • 3
    • 4
  • Peter M. Nagy
    • 1
  • Gregory A. Chass
    • 2
    • 3
    • 4
    • 5
  • Pal Fejerdy
    • 6
  • John W. Nicholson
    • 7
  • Imre G. Csizmadia
    • 1
    • 2
    • 3
    • 4
    • 8
  • Csaba Dobó-Nagy
    • 1
  1. 1.Materials Science Research Institute, Faculty of DentistrySemmelweis UniversityBudapestHungary
  2. 2.Global Institute of Computational Molecular and Materials Science (GIOCOMMS)TorontoCanada
  3. 3.Global Institute of Computational Molecular and Materials Science (GIOCOMMS)BudapestHungary
  4. 4.Global Institute of Computational Molecular and Materials Science (GIOCOMMS)BeijingChina
  5. 5.Department of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  6. 6.Department of Prosthetic Dentistry, Faculty of DentistrySemmelweis UniversityBudapestHungary
  7. 7.School of ScienceUniversity of Greenwich, Medway CampusChatham KentUK
  8. 8.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations