Skip to main content
Log in

Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Pulsed electric field (PEF) treatment was examined as a potential decontamination method for tissue engineering biomatrices by determining the susceptibility of a range of microorganisms whilst within a collagen gel. High intensity pulsed electric fields were applied to collagen gel biomatrices containing either Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Candida albicans, Saccharomyces cerevisiae or the spores of Aspergillus niger. The results established varying degrees of microbial PEF susceptibility. When high initial cell densities (106–107 CFU ml−1) were PEF treated with 100 pulses at 45 kV cm−1, the greatest log reduction was achieved with S. cerevisiae (~6.5 log10 CFU ml−1) and the lowest reduction achieved with S. epidermidis (~0.5 log10 CFU ml−1). The results demonstrate that inactivation is influenced by the intrinsic properties of the microorganism treated. Further investigations are required to optimise the microbial inactivation kinetics associated with PEF treatment of collagen gel biomatrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  CAS  Google Scholar 

  2. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29–40.

    CAS  Google Scholar 

  3. Kwakman PHS, Te Velde AA, Vandenbroucke-Grauls CMJE, Van Deventer SJH, Zaat SAJ. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother. 2006;50(12):3977–83.

    Article  CAS  Google Scholar 

  4. Boelens JJ, Dankert J, Murk JL, Weening JJ, van der Poll T, Dingemans KP, et al. Biomaterial-associated persistence of Staphylococcus epidermidis in pericatheter macrophages. J Infect Dis. 2000;181(4):1337–49.

    Article  CAS  Google Scholar 

  5. Madigan MT, Martinko JM, Brock TD. Brock biology of microorganisms. Upper Saddle River: Pearson Prentice Hall; 2006.

    Google Scholar 

  6. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–81.

    Article  CAS  Google Scholar 

  7. Von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.

    Article  Google Scholar 

  8. Kuijer R, Jansen EJP, Emans PJ, Bulstra SK, Riesle J, Pieper J, et al. Assessing infection risk in implanted tissue-engineered devices. Biomaterials. 2007;28(34):5148–54.

    Article  CAS  Google Scholar 

  9. Gorham SD, Srivastava S, French DA, Scott R. The effect of gamma-ray and ethylene oxide sterilization on collagen-based wound-repair materials. J Mater Sci Mater Med. 1993;4(1):40–9.

    Article  CAS  Google Scholar 

  10. Griffiths S, Smith S, MacGregor SJ, Anderson JG, Walle Cvd, Beveridge JR, et al. Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel. J Appl Microbiol. 2008;105(4):963–9.

    Article  CAS  Google Scholar 

  11. Chevallay B, Abdul-Malak N, Herbage D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J Biomed Mater Res. 2000;49(4):448–59.

    Article  CAS  Google Scholar 

  12. Yunoki S, Ikoma T, Monkawa A, Ohta K, Tanaka J, Sotome S, et al. Influence of gamma irradiation on the mechanical strength and in vitro biodegradation of porous hydroxyapatite/collagen composite. J Am Ceram Soc. 2006;89:2977–9.

    CAS  Google Scholar 

  13. Cheung DT, Perelman N, Tong D, Nimni ME. The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J Biomed Mater Res. 1990;24(5):581–9.

    Article  CAS  Google Scholar 

  14. Smith S, Griffiths S, Macgregor S, Beveridge J, Anderson J, van der Walle C, et al. Pulsed electric field as a potential new method for microbial inactivation in scaffold materials for tissue engineering: the effect on collagen as a scaffold. J Biomed Mater Res A. 2008;90(3):844–51.

    Google Scholar 

  15. Manas P, Barsotti L, Cheftel JC. Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents. Innov Food Sci Emerg Technol. 2001;2(4):239–49.

    Article  Google Scholar 

  16. Ravishankar S, Fleischman GJ, Balasubramaniam VM. The inactivation of Escherichia coli O157:H7 during pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 2002;19(4):351–61.

    Article  CAS  Google Scholar 

  17. Yaqub S, Anderson JG, MacGregor SJ, Rowan NJ. Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Lett Appl Microbiol. 2004;39:246–51.

    Article  CAS  Google Scholar 

  18. Donsi G, Ferrari G, Pataro G. Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: the effect of electric field unevenness and initial cell concentration. J Food Eng. 2007;78(3):784–92.

    Article  Google Scholar 

  19. Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG. Preservation of foods with pulsed electric fields. London: Academic Press; 1999.

    Google Scholar 

  20. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54(3):626–37.

    Article  CAS  Google Scholar 

  21. Beveridge JR, MacGregor SJ, Anderson JG, Fouracre RA. The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Trans Plasma Sci. 2005;33(4):1287–93.

    Article  Google Scholar 

  22. Songnuan W, Kirawanich P. High-intensity nanosecond pulsed electric field effects on early physiological development in Arabidopsis thaliana. World Acad Sci Eng Technol. 2011;77:208–12.

    Google Scholar 

  23. Chen M-T, Jiang C, Vernier PT, Wu Y-H, Gundersen MA. Two-dimensional nanosecond electric field mapping based on cell electropermeabilization. PMC Biophys. 2009;2(1):9.

    Article  Google Scholar 

  24. Food and Drug Administration US. Kinetics of microbial inactivation for alternative food processing technologies. 2009. http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm101662.htm. Accessed 22 Dec 2011.

  25. Aronsson K, Lindgren M, Johansson BR, Rönner U. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innov Food Sci Emerg Technol. 2001;2(1):41–54.

    Article  Google Scholar 

  26. Mazurek B, Lubicki P, Staroniewicz Z. Effect of short HV pulses on bacteria and fungi. IEEE Trans Dielectr Electr Insul. 1995;2(3):418–25.

    Article  Google Scholar 

  27. Pothakamury UR, Monsalve-Gonzàlez A, Barbosa-Cánovas GV, Swanson BG. Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Res Int. 1995;28(2):167–71.

    Article  Google Scholar 

  28. Espino-Cortes F, El-Hag AH, Adedayo O, Jayaram S, Anderson W. Water processing by high intensity pulsed electric fields. IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Missouri, USA. 2006:684–7.

  29. Raso J, Heinz V. Pulsed electric fields technology for the food industry: fundamentals and applications. New York: Springer; 2006.

    Book  Google Scholar 

  30. Yang L, Li H, Wang K, Tan W, Yang W, Zheng J. Atomic force microscopy study of the effect of pulsed electric field on Staphylococcus epidermidis. Anal Chem. 2008;80(16):6222–7.

    Article  CAS  Google Scholar 

  31. MacGregor SJ, Farish O, Fouracre R, Rowan NJ, Anderson JG. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Trans Plasma Sci. 2000;28(1):144–9.

    Article  Google Scholar 

  32. Hülsheger H, Potel J, Niemann EG. Electric field effects on bacteria and yeast cells. Radiat Environ Biophys. 1983;22(2):149–62.

    Article  Google Scholar 

  33. Zhang Q, Chang FJ, Barbosa-Cánovas GV, Swanson BG. Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. Lebensmittel-Wissenschaft und-Technologie. 1994;27:538–43.

    Article  CAS  Google Scholar 

  34. Grahl T, Märkl H. Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol. 1996;45(1):148–57.

    Article  CAS  Google Scholar 

  35. Fiedurek J. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnologica. 1999;19(2):179–86.

    Article  CAS  Google Scholar 

  36. Sun D-W. Emerging technologies for food processing. London: Academic Press; 2005.

    Google Scholar 

  37. Friess W, Schlapp M. Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur J Pharm Biopharm. 2006;63:176–87.

    Article  CAS  Google Scholar 

  38. Shimeld LA, Rodgers AT. Essentials of diagnostic microbiology. Albany: Delmar; 1999.

    Google Scholar 

  39. Mcdonnell GE. Antisepsis, disinfection, and sterilization: types, action, and resistance. Washington, DC: ASM Press; 2007.

    Google Scholar 

  40. Nather A, Yusof N, Hilmy N. Radiation in tissue banking: basic science and clinical applications of irradiated tissue allografts. Hackensack: World Scientific; 2007.

    Google Scholar 

Download references

Acknowledgments

SG was supported by an EPSRC studentship. We thank David Currie and Catherine Henderson for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Helen Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, S., Maclean, M., Anderson, J.G. et al. Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment. J Mater Sci: Mater Med 23, 507–515 (2012). https://doi.org/10.1007/s10856-011-4526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4526-x

Keywords

Navigation