Skip to main content
Log in

Gelatin-based anionic hydrogel as biocompatible substrate for human keratinocyte growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ionic hydrogels are biocompatible candidates for skin tissue engineering. Two hydrogels synthesized by crosslinking gelatin with polylysine (positively charged HG1) or polyglutamic acid (negatively charged HG2) were tested using spontaneously immortalized human keratinocytes (HaCaT). HaCaT cells displayed higher adhesion and proliferation onto HG2, forming a continuous and stratified epithelium after 7 days. Moreover HaCaT cells grown onto HG2 showed a decreased Epilysin and Filaggrin expression, while transglutaminase-1 expression was increased. Those data indicate that human keratinocyte can form a stratified epithelium onto HG2 that could therefore be an useful tool for skin tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feliciani C, Gupta AK, Sauder DN. Crit Rev Oral Biol Med. 1996;7:300–18.

    Article  CAS  Google Scholar 

  2. Hakvoort TE, et al. Virchows Arch. 1999;434:221–6.

    Article  CAS  Google Scholar 

  3. Powell HM, McFarland KL, Bulter DL, Supp DM, Boyce ST. Tissue Eng Part A. 2010;16:1083–92.

    Article  CAS  Google Scholar 

  4. Rheinwald JG, Green H. Cell. 1975;6:331–43.

    Article  CAS  Google Scholar 

  5. Machens HG, Berger AC, Mailaender P. Cells Tissues Organs. 2000;167:88–94.

    Article  CAS  Google Scholar 

  6. Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW. Orthod Craniofac Res. 2010;13:11–20.

    Article  CAS  Google Scholar 

  7. Layman H, Spiga MG, Brooks T, Pham S, Webster KA, Andreopoulos FM. Biomaterials. 2007;28:2646–54.

    Article  CAS  Google Scholar 

  8. Tabata Y, Ikada Y. Biomaterials. 1999;20:2169–75.

    Article  CAS  Google Scholar 

  9. Tabata Y, et al. Biomaterials. 1998;19:807–15.

    Article  CAS  Google Scholar 

  10. Lalan S, Pomerantseva I, Vacanti JP. World J Surg. 2001;25:1458–66.

    Article  CAS  Google Scholar 

  11. Ehrenreich M, Ruszczak Z. Tissue Eng. 2006;12:2407–24.

    Article  CAS  Google Scholar 

  12. Kopeček J. Biomaterials. 2007;28:5185–92.

    Article  Google Scholar 

  13. Peters T Jr. Adv Protein Chem. 1985;37:161–245.

    Article  CAS  Google Scholar 

  14. Collier TO, Jenney CR, DeFife KM, Anderson JM. Biomed Sci Instrum. 1997;33:178–83.

    CAS  Google Scholar 

  15. Nimeri G, Ohman L, Elwing H, Wettero J, Bengtsson T. Biomaterials. 2002;23:1785–95.

    Article  CAS  Google Scholar 

  16. McFarland CD, De Filippis C, Jenkins M, Tunstell A, Rhodes NP, Williams DF, Steele JG. J Biomater Sci Polym Edn. 1998;9:1227–39.

    Article  CAS  Google Scholar 

  17. Presland RB, Dale BA. Crit Rev Oral Biol Med. 2000;11:383–408.

    Article  CAS  Google Scholar 

  18. McGrath JA, Uitto J. Trends Mol Med. 2008;14:20–7.

    Article  CAS  Google Scholar 

  19. Lohi J, Wilson CL, Roby JD, Parks WC. J Biol Chem. 2001;276:10134–44.

    Article  CAS  Google Scholar 

  20. Saarialho-Kere U, Kerkelä E, Jahkola T, Suomela S, Keski-Oja J, Lohi J. J Invest Dermatol. 2002;119:14–21.

    Article  CAS  Google Scholar 

  21. Renò F, Sabbatini M, Stella M, Magliacani G, Cannas M. Wound Repair Regen. 2005;13:255–61.

    Article  Google Scholar 

  22. Hitomi K. Eur J Dermatol. 2005;15:313–9.

    CAS  Google Scholar 

  23. Matsuki M, et al. Proc Natl Acad Sci USA. 1998;95:1044–9.

    Article  CAS  Google Scholar 

  24. Otani Y, Tabata Y, Ikada Y. J Biomed Mater Res. 1996;31:158–66.

    Article  CAS  Google Scholar 

  25. Schmidt JJ, Rowley J, Kong HJ. J Biomed Mater Res. 2008;87A:1113–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors thank Dr. M. De Andrea from the Microbiology Laboratory, University of Eastern Piedmont ‘‘A. Avogadro’’ for the kind gift of HaCaT cells.

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Renò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renò, F., Rizzi, M. & Cannas, M. Gelatin-based anionic hydrogel as biocompatible substrate for human keratinocyte growth. J Mater Sci: Mater Med 23, 565–571 (2012). https://doi.org/10.1007/s10856-011-4519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4519-9

Keywords

Navigation