Skip to main content
Log in

A simple drug anchoring microfiber scaffold for chondrocyte seeding and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The structural properties of microfiber meshes made from poly(2-hydroxyethyl methacrylate) (PHEMA) were found to significantly depend on the chemical composition and subsequent cross-linking and nebulization processes. PHEMA microfibres showed promise as scaffolds for chondrocyte seeding and proliferation. Moreover, the peak liposome adhesion to PHEMA microfiber scaffolds observed in our study resulted in the development of a simple drug anchoring system. Attached foetal bovine serum-loaded liposomes significantly improved both chondrocyte adhesion and proliferation. In conclusion, fibrous scaffolds from PHEMA are promising materials for tissue engineering and, in combination with liposomes, can serve as a simple drug delivery tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buckwalter JA, Lohmander S. Operative treatment of osteoarthrosis. Current practice and future development. J Bone Joint Surg Am. 1994;76:1405–18.

    CAS  Google Scholar 

  2. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  Google Scholar 

  3. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G. Autologous osteochondral grafting-technique and long-term results. Injury. 2008;39(1):S32–9.

    Article  Google Scholar 

  4. Solheim E, Hegna J, Oyen J, Austgulen OK, Harlem T, Strand T. Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5–9 years. Knee. 2009;17(1):84–7.

    Article  Google Scholar 

  5. Brittberg M, Sjogren-Jansson E, Lindahl A, Peterson L. Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee. Biomaterials. 1997;18:235–42.

    Article  CAS  Google Scholar 

  6. Filova E, Jelinek F, Handl M, Lytvynets A, Rampichova M, Varga F, Cinatl J, Soukup T, Trc T, Amler E. Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee. J Biomed Mater Res B Appl Biomater. 2008;87:415–24.

    Google Scholar 

  7. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.

    Article  CAS  Google Scholar 

  8. Kon M, de Visser AC. A poly(HEMA) sponge for restoration of articular cartilage defects. Plast Reconstr Surg. 1981;67:288–94.

    CAS  Google Scholar 

  9. Pradny M, Lesny P, Fiala J, Vacik J, Slouf M, Michalek J, Sykova E. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid. Collection Czechoslov Chem Commun. 2003;68:812–22.

    Article  CAS  Google Scholar 

  10. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 2007;28:3012–25.

    Article  CAS  Google Scholar 

  11. Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59:1392–412.

    Article  CAS  Google Scholar 

  12. Yang EL, Qin XH, Wang SY. Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett. 2008;62:3555–7.

    Article  CAS  Google Scholar 

  13. Ren DW, Yi HF, Zhang H, Xie WY, Wang W, Ma XJ. A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. J Memb Sci. 2006;280:99–107.

    Article  CAS  Google Scholar 

  14. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.

    Article  CAS  Google Scholar 

  15. Chen ZG, Mo XM, Qing FL. Electrospinning of collagen-chitosan complex. Mater Lett. 2007;61:3490–4.

    Article  CAS  Google Scholar 

  16. Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–30.

    Article  CAS  Google Scholar 

  17. Lannutti J, Reneker D, Ma T, Tomasko D, Farson DF. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C Biomimetic Supramol Sys. 2007;27:504–9.

    Article  CAS  Google Scholar 

  18. Lukas D, Sarkar A, Martinova L, Vodsedalkova K, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twentyfirstcentury). Text Progr. 2009;41:59–140.

    Article  Google Scholar 

  19. Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. A method of Nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. U.S. Patent No. WO2005024101 2005.

  20. Pradny M, Martinova L, Michalek J, Fenclova T, Krumbholcova E. Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate. Cent Eur J Chem. 2007;5:779–92.

    Article  CAS  Google Scholar 

  21. Lukas D, Sarkar A, Pokorny P. Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys. 2008;103:309–16.

    Article  Google Scholar 

  22. Fiser R, Konopasek I. Different modes of membrane permeabilization by two RTX toxins: HlyA from Escherichia coli and CyaA from Bordetella pertusis. Biochim Biophys Acta. 2009;1788:1249.

    Article  CAS  Google Scholar 

  23. Horak D, Hlidkova H, Hradil J, Lapcikova M, Slouf M. Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization. Polymer. 2008;49:2046–54.

    Article  CAS  Google Scholar 

  24. Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22:129–50.

    Article  CAS  Google Scholar 

  25. Bonanomi MH, Velvart M, Stimpel M, Roos KM, Fehr K, Weder HG. Studies of pharmacokinetics and therapeutic effects of glucocorticoids entrapped in liposomes after intraarticular application in healthy rabbits and in rabbits with antigen-induced arthritis. Rheumatol Int. 1987;7:203–12.

    Article  CAS  Google Scholar 

  26. Mickova A, Tomankova K, Kolarova H, Bajgar R, Kolar P, Sunka P, Plencner M, Jakubova R, Benes J, Kolacna L, Planka L, Necas A, Amler E. Ultrasonic shock-wave as a control mechanism for liposome drug delivery system for possible use in scaffold implanted to animals with iatrogenic articular cartilage defects. Acta Vet Brno. 2008;77:285–96.

    Article  CAS  Google Scholar 

  27. Matteucci ML, Thrall DE. The role of liposomes in drug delivery and diagnostic imaging: a review. Vet Radiol Ultrasound. 2000;41:100–7.

    Article  CAS  Google Scholar 

  28. Duan B, Yuan XY, Zhu Y, Zhang YY, Li XL, Zhang Y, Yao KD. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J. 2006;42:2013–22.

    Article  CAS  Google Scholar 

  29. Duan B, Wu L, Li X, Yuan X, Li X, Zhang Y, Yao K. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro. J Biomater Sci Polym Ed. 2007;18:95–115.

    Article  CAS  Google Scholar 

  30. Rhee W, Rosenblatt J, Castro M, Schroeder J, Rao PR, Harner CHF, Berg RA. In vivo stability of poly(ethylene glycol) collagen composites. In: Zalipsky S, Milton Harris J, editors. Poly(ethylene glycol) chemistry and biological applications. Washington: American Chemical Society Series; 1997 p.420–440.

  31. Savina IN, Galaev IY, Mattiasson B. Ion-exchange macroporous hydrophilic gel monolith with grafted polymer brushes. J Mol Recognit. 2006;19:313–21.

    Article  CAS  Google Scholar 

  32. Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellin S, Grandi C, Parnigotto PP. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80:661–8.

    Google Scholar 

  33. Zhang C, Zhang N, Wen X. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels. J Biomed Mater Res A. 2007;82:637–50.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge J. Farberova from the Technical University of Liberec for measurements of fiber diameters and Sam Norris for proof reading of this manuscript. Supported by the Academy of Sciences of the Czech Republic (institutional research plans AV0Z50390703 and AV0Z50390512), the Ministry of Education, Youth and Sports of the Czech Republic (research programs NPV II 2B06130 and 1M0510, research project CARSILA number ME10145), the Grant Agency of the Academy of Sciences Grant No. IAA500390702 and by the Czech Science Foundation Grant No. GA202/09/1151, IGA MZCR, No. NT12156, and the Grant Agency of the Charles University Grant No. 122508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evžen Amler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rampichová, M., Martinová, L., Košťáková, E. et al. A simple drug anchoring microfiber scaffold for chondrocyte seeding and proliferation. J Mater Sci: Mater Med 23, 555–563 (2012). https://doi.org/10.1007/s10856-011-4518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4518-x

Keywords

Navigation