Skip to main content
Log in

An experimental study of electrochemical polishing for micro-electro-discharge-machined stainless-steel stents

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper reports electrochemical polishing (EP) of 316L stainless-steel structures patterned using micro-electro-discharge machining (μEDM) for application to stents including intelligent stents based on micro-electro-mechanical-systems technologies. For the process optimization, 10 μm deep cavities μEDMed on the planar material were polished in a phosphoric acid-based electrolyte with varying current densities and polishing times. The EP condition with a current density of 1.5 A/cm2 for an EP time of 180 s exhibited the highest surface quality with an average roughness of 28 nm improved from~400 nm produced with high-energy μEDM. The EP of μEDMed surfaces was observed to produce almost constant smoothness regardless of the initial roughness determined by varying discharge energies. Energy-dispersive X-ray spectroscopy was performed on the μEDMed surfaces before and after EP. A custom rotational apparatus was used to polish tubular test samples including stent-like structures created using μEDM, demonstrating uniform removal of surface roughness and sharp edges from the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Logan AG, Bradley D. Sleep apnea and cardiovascular disease. Curr Hypertens Rep. 2010;12:182–8.

    Article  Google Scholar 

  2. Al-Suwaidi J, Berger PB, Holmes DR. Coronary artery stents. JAMA. 2000;284(14):1828–36.

    Article  CAS  Google Scholar 

  3. Al-Mubarak N, Iyer SS. Carotid artery stenting for the high surgical risk patients. J Cardiovasc Surg. 2005;46(1):1–8.

    CAS  Google Scholar 

  4. Cullen SN, Chapman RW. Review article: Current management of primary sclerosing cholangitis. Alimentary Pharmacol Therap. 2005;21(8):933–48.

    Article  CAS  Google Scholar 

  5. Monkemuller KE, Kahl S, Malfertheiner P. Endoscopic therapy of chronic pancreatitis. Dig Dis. 2004;22(3):280–91.

    Article  Google Scholar 

  6. Saito Y, Imamura H. Airway stenting. Surg Today. 2005;35(4):265–70.

    Article  Google Scholar 

  7. Carrau RL. Use of stents in head and neck surgery. Curr Opin Otolaryngol Head Neck Surg. 2005;13(2):105–6.

    Article  Google Scholar 

  8. Bertand OF, Sipehia R, Mongrain R, Rodes J, Tardif J, Bilodeau L, Cote G, Bourassa MG. Biocompatibility aspects of new stent technology. J Am Coll Cardiol. 1998;32:562–71.

    Article  Google Scholar 

  9. Kathuria YP. Laser microprocessing of metallic stent for medical therapy. J Mater Process Technol. 2005;170(3):545–50.

    Article  CAS  Google Scholar 

  10. Momma C, Knop U, Nolte S. Laser cutting of slotted tube coronary stents—state-of-the-art and future developments. Prog Biomed Res. 1999;4(1):39–44.

    Google Scholar 

  11. Raval A, Choubey A, Engineer C, Kothwala D. Development and assessment of 316LVM cardiovascular stent. Mater Sci Eng A. 2004;386(1–2):331–43.

    Google Scholar 

  12. Masaki T, Kawata K, Masuzawa T. Micro electro-discharge machining and its applications. Proc. IEEE Int. Workshop on MicroElectro Mechanical Systems (MEMS ’90). Napa Valley, California; 1990. p. 21–26.

  13. Takahata K. Micro-electro-discharge machining technologies for MEMS. In Takahata K,editor. Micro electronic and mechanical systems. IN-TECH; 2009 p. 143–164.

  14. Takahata K, Gianchandani YB. A planar approach for manufacturing cardiac stents: design, fabrication, and mechanical evaluation. J Microelectromech Syst. 2004;13:933–9.

    Article  Google Scholar 

  15. Takahata K, Gianchandani YB, Wise KD. Micromachined antenna stents and cuffs for monitoring intraluminal pressure and flow. J Microelectromech Syst. 2006;15:1289–98.

    Article  Google Scholar 

  16. Green SR, Gianchandani YB. Wireless magnetoelastic monitoring of biliary stents. J Microelectromech Syst. 2009;18(1):64–78.

    Article  Google Scholar 

  17. Hocheng H, Kao PS, Chen YF. Electropolishing of 316L stainless steel for anticorrosion passivation. J Mater Eng Perform. 2001;10:414–8.

    Article  CAS  Google Scholar 

  18. Lee ES. Machining characteristics of the electropolishing of stainless steel (STS316L). Int J Adv Manuf Technol. 2000;16:591–9.

    Article  Google Scholar 

  19. Kao PS, Hocheng H. Optimization of electrochemical polishing of stainless steel by grey relational analysis. J Mater Process Technol. 2003;140:255–9.

    Article  CAS  Google Scholar 

  20. Abbott AP, Capper G, McKenzie KJ, Ryder KS. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim Acta. 2006;51:4420–5.

    Article  CAS  Google Scholar 

  21. Chen SC, Tu GC, Huang CA. The electrochemical polishing behavior of porous austenitic stainless steel (AISI 316L) in phosphoric-sulfuric mixed acids. Surf Coat Technol. 2005;200:2065–71.

    Article  CAS  Google Scholar 

  22. Scheerder ID, Sohier J, Verbeken E, Froyen L, Humbeeck JV. Biocompatibility of coronary stent materials: effect of electrochemical polishing. Materialwissenschaft und Werkstofftechnik. 1999;32(2):142–8.

    Google Scholar 

  23. Haiıdopoulos M, Turgeon S, Sarra-Bournet C, Laroche G, Mantovani D. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. J Mater Sci: Mater Med. 2006;17:647–57.

    Article  Google Scholar 

  24. Zhao H, Humbeeck JV, Sohier J, Scheerder IV. Electrochemical polishing of 316L stainless steel slotted tube coronary stents. J Mater Sci: Mater Med. 2002;13:911–6.

    Article  CAS  Google Scholar 

  25. Bhuyan A, Gregory B, Lei H, Yee SY, Gianchandani YB. Pulse and DC electropolishing of stainless steel for stents and other devices. IEEE Sensors, Irvine, California; 2005 p. 314–317.

  26. Fleischer J, Masuzawa T, Schmidt J, Knoll M. New applications for micro-EDM. J Mater Process Technol. 2004;149:246–9.

    Article  CAS  Google Scholar 

  27. Kwok SCH, Wang J, Chu PK. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diam Relat Mater. 2005;14:78–85.

    Article  CAS  Google Scholar 

  28. Zhou J, Yun J, Zang XP, Shen J, Lin SC. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloid Surface B. 2005;41:55–62.

    Article  CAS  Google Scholar 

  29. Wootton DM, Ku DN. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng. 1999;1:299–329.

    Article  CAS  Google Scholar 

  30. Tsunoda N, Kokubo K, Sakai K, Fukuda M, Miyazaki M, Hiyoshi T. Surface roughness of cellulose hollow fiber dialysis membranes and platelet adhesion. ASAIO J. 1999;45:418–23.

    Article  CAS  Google Scholar 

  31. Hecker JF, Scandrett LA. Roughness and thrombogenicity of the outer surfaces of intravascular catheters. J Biomed Mater Res. 1985;19:381–95.

    Article  CAS  Google Scholar 

  32. Zingg W, Neumann AW, Strong AB, Hum OS, Absolom DR. Effect of surface roughness on platelet adhesion under static and under flow conditions. Can J Surg. 1982;25:16–9.

    CAS  Google Scholar 

  33. Wong YS, Rahman M, Lim HS, Han H, Ravi N. Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. J Mater Process Technol. 2003;140:303–7.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Canada Foundation for Innovation, and the British Columbia Knowledge Development Fund. K. Takahata is supported by the Canada Research Chairs program. The authors would like to thank Dr. Boris Stoeber for access to the optical profilometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Takahata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappin, D., Mohammadi, A.R. & Takahata, K. An experimental study of electrochemical polishing for micro-electro-discharge-machined stainless-steel stents. J Mater Sci: Mater Med 23, 349–356 (2012). https://doi.org/10.1007/s10856-011-4513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4513-2

Keywords

Navigation