Skip to main content

Advertisement

Log in

Novel biodegradable, biomimetic and functionalised polymer scaffolds to prevent expansion of post-infarct left ventricular remodelling

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Over the past decade, a large number of strategies and technologies have been developed to reduce heart failure progression. Among these, cardiac tissue engineering is one of the most promising. Aim of this study is to develop a 3D scaffold to treat cardiac failure. A new three-block copolymer, obtained from δ-valerolactone and polyoxyethylene, was synthesised under high vacuum without catalyst. Copolymer/gelatine blends were microfabricated to obtain a ECM-like geometry. Structures were studied under morphological, mechanical, degradation and biological aspects. To prevent left ventricular remodelling, constructs were biofunctionalises with molecularly imprinted nanoparticles towards the matrix metalloproteinase MMP-9. Results showed that materials are able to reproduce the ECM structure with high resolution, mechanical properties were in the order of MPa similar to those of the native myocardium and cell viability was verified. Nanoparticles showed the capability to rebind MMP-9 (specific rebinding 18.67) and to be permanently immobilised on the scaffold surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR. Myocardial tissue engineering. Br Med Bull. 2008;87:31–47.

    Article  CAS  Google Scholar 

  2. Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 2003;8:259–69.

    Article  CAS  Google Scholar 

  3. Leor J, Amsalem Y, Cohen S. Cells, scaffold, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105:151–63.

    Article  CAS  Google Scholar 

  4. Prabhakaran MP, Venugopal J, Kai D, Ramakrishna S. Biomimetic material strategies for cardiac tissue engineering. Mater Sci Eng C. 2011;31:503–13.

    Article  CAS  Google Scholar 

  5. Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers. Trends Polym Sci. 1993;1:261–7.

    CAS  Google Scholar 

  6. Cristallini C, Lazzeri L, Cascone MG, Polacco G, Lupinacci D, Barbani N. Enzyme-based bioartificial polymeric materials. The system a-amylase-poly(vinyl alcohol). Polym Int. 1997;44:510–6.

    Article  CAS  Google Scholar 

  7. Cristallini C, Barbani N, Giusti P, Lazzeri L, Cascone MG, Ciardelli G. Polymerization onto biological templates, a new way to obtain bioartificial polymeric materials. Macromol Chem Phys. 2001;202:2104–13.

    Article  CAS  Google Scholar 

  8. Guerra GD, Cristallini C, Rosellini E, Barbani N. A hydroxyapatite-collagen composite useful to make bioresorbable scaffolds for bone reconstruction. Adv Sci Technol. 2010;76:133–8.

    Article  CAS  Google Scholar 

  9. Rosellini E, Cristallini C, Barbani N, Vozzi G, D’Acunto M, Ciardelli G, Giusti P. New bioartificial systems and biodegradable synthetic polymers for cardiac tissue engineering: a preliminary screening. Biomed Eng Appl Basis Commun. 2010;22:497–507.

    Article  CAS  Google Scholar 

  10. Mukherjee S, Gualandi C, Focarete ML, Ravichandran R, Venugopal JR, Raghunath M, Ramakrishna S. Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. J Mater Sci Mater Med. 2011;22:1689–99.

    Article  CAS  Google Scholar 

  11. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater. 2011;98B:379–86.

    Article  CAS  Google Scholar 

  12. Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliver Rev. 2004;56:1635–47.

    Article  Google Scholar 

  13. Chen CS, Mrksich M, Huang S, Whitsides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.

    Article  CAS  Google Scholar 

  14. Wang PY, Yu J, Lin JH, Tsai WB. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011. doi:10.1016/j.actbio.2011.05.021.

  15. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YCF, Tan LP. Porous polycaprolactone for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomateralia. 2010;6:2028–34.

    Article  CAS  Google Scholar 

  16. Ciardelli G, Chiono V, Cristallini C, Barbani N, Ahluwalia A, Vozzi G, Previti A, Tantussi G, Giusti P. Innovative tissue engineering structures through advanced manufacturing technologies. J Mater Sci Mater Med. 2004;15:305–10.

    Article  CAS  Google Scholar 

  17. Rosellini E, Vozzi G, Barbani N, Giusti P, Cristallini C. Three-dimensional microfabricated scaffolds with cardiac extracellular matrix-like architecture. Int J Artif Organs. 2010;33:885–94.

    CAS  Google Scholar 

  18. Causa F, Netti PA, Ambrosio L. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials. 2007;28(34):5093–9.

    Article  CAS  Google Scholar 

  19. Khademhosseini A, Langer R. Nanobiotechnology for drug delivery and tissue engineering. Chem Eng Prog. 2006;102:38–42.

    CAS  Google Scholar 

  20. Rechichi A, Cristallini C, Vitale U, Ciardelli G, Barbani N, Vozzi G, Giusti P. New biomedical devices with selective peptide recognition properties. Part 1: characterization and cytotoxicity of molecularly imprinted polymers. J Cell Mol Med. 2007;11(6):1367–76.

    Article  CAS  Google Scholar 

  21. Mosbach K, Ramström O. The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnology. 1996;14:163–70.

    Article  CAS  Google Scholar 

  22. Shea KJ. Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites. Trends Polym Sci. 1994;2:166–73.

    CAS  Google Scholar 

  23. Steinke J, Sherrington D, Dunkin I. Imprinting of synthetic polymers using molecular templates. Adv Polym Sci. 1995;123:80–125.

    Google Scholar 

  24. Cristallini C, Ciardelli G, Giusti P, Barbani N. Acrylonitrile–acrylic acid copolymer membrane imprinted with uric acid for clinical uses. Macromol Biosci. 2004;4:31–8.

    Article  CAS  Google Scholar 

  25. Ciardelli G, Borrelli C, Silvestri D, Cristallini C, Barbani N, Giusti P. Supported imprinted nanospheres for the selective recognition of cholesterol. Biosensors Bioelectron. 2006;21:2329–38.

    Article  CAS  Google Scholar 

  26. Silvestri D, Barbani N, Cristallini C, Giusti P, Ciardelli G. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J Membr Sci. 2006;282:284–95.

    Article  CAS  Google Scholar 

  27. Rosellini E, Barbani N, Giusti P, Ciardelli G, Cristallini C. Novel bioactive scaffolds with fibronectin recognition nanosites based on molecular imprinting technology. J Appl Polym Sci. 2010;118:3236–44.

    Article  CAS  Google Scholar 

  28. Rosellini E, Barbani N, Giusti P, Rechichi A, Cristallini C. Molecularly imprinted nanoparticles with recognition properties towards a laminin H–Tyr–Ile–Gly–Ser–Arg–OH sequence for tissue engineering applications. Biomed Mater. 2010;5:065007.

    Article  Google Scholar 

  29. Cohn D, Younes H. Biodegradable PEO/PLA block copolymers. J Biomed Mater Res. 1988;22:993–1009.

    Article  CAS  Google Scholar 

  30. Kimura Y, Matsuzaki Y, Yamame H, Kitao T. Preparation of block copoly(ester-ether) comprising poly(l-lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo. Polymer. 1989;30:1342–9.

    Article  CAS  Google Scholar 

  31. Cerrai P, Tricoli M, Andruzzi F, Paci M, Paci M. Synthesis and characterization of polymers from β-propiolactone and poly(ethylene glycol)s. Polymer. 1987;28:831–6.

    Article  CAS  Google Scholar 

  32. Cerrai P, Tricoli M, Andruzzi F, Paci M, Paci M. Polyether-polyester block copolymers by non-catalysed polymerization of ε-caprolactone with poly(ethylene glycol). Polymer. 1989;30:338–43.

    Article  CAS  Google Scholar 

  33. Cerrai P, Tricoli M. Block copolymers from l-lactide and poly(ethylene glycol) through a non-catalyzed route. Makromol Chem Rapid Commun. 1993;14:529–38.

    Article  CAS  Google Scholar 

  34. Sbarbati-Del Guerra R, Cascone MG, Tricoli M, Cerrai P. In vitro validation of poly(ester–ether–ester) block copolymers as biomaterials. Altern Lab Anim. 1993;21:97–101.

    Google Scholar 

  35. Cascone MG, Tricoli M, Cerrai P, Sbarbati Del Guerra R. Cell cultures in the biocompatibility study of synthetic materials. Cytotechnology. 1993;11:S137–9.

    Article  Google Scholar 

  36. Cerrai P, Guerra GD, Lelli L, Tricoli M, Sbarbati Del Guerra R, Cascone MG, Giusti P. Poly(ester–ether–ester) block copolymers as biomaterials. J Mater Sci Mater Med. 1994;5:33–9.

    Article  CAS  Google Scholar 

  37. Cerrai P, Tricoli M, Lelli L, Guerra GD, Sbarbati Del Guerra R, Cascone MG, Giusti P. Block copolymers of l-lactide and poly(ethylene glycol) for biomedical applications. J Mater Sci Mater Med. 1994;5:308–13.

    Article  CAS  Google Scholar 

  38. Sbarbati Del Guerra R, Cristallini C, Rizzi N, Barsacchi R, Guerra GD, Tricoli M, Cerrai P. The biodegradation of poly(ester–ether–ester) block copolymers in a cellular environment in vitro. J Mater Sci Mater Med. 1994;5:891–5.

    Article  CAS  Google Scholar 

  39. Sbarbati Del Guerra R, Gazzetti P, Lazzerini G, Cerrai P, Guerra GD, Tricoli M, Cristallini C. Degradation products of poly(ester–ether–ester) block copolymers do not alter endothelial metabolism in vitro. J Mater Sci Mater Med. 1995;6:824–8.

    Article  Google Scholar 

  40. Cerrai P, Cristallini C, Del Chicca MG, Guerra GD, Maltinti S, Sbarbati Del Guerra R, Tricoli M. Hydrolysis of poly(ester–ether–ester) block copolymers in the presence of endothelial cells: in vitro modulation of endothelin release. Polym Bull. 1997;39:53–8.

    Article  CAS  Google Scholar 

  41. Guerra GD, Cristallini C, Barbani N, Gagliardi M. Bioresorbable microspheres as devices for the controlled release of paclitaxel. Int J Biol Biomed Eng. 2011;5:121–8.

    Google Scholar 

  42. Wu J, Zeng F, Huang X-P, Chung JC-Y, Konecny F, Weisel RD, Li R-K. Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32:579–86.

    Article  CAS  Google Scholar 

  43. Vanhoutte D, Schellings M, Pinto Y, Heymans S. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res. 2006;69:604–13.

    Article  CAS  Google Scholar 

  44. Krumme D, Wenzel H, Tschesche H. Hydroxamate derivatives of substrate-analogous peptides containing aminomalonic acid are potent inhibitors of matrix metalloproteinases. FEBS Lett. 1998;436:209–12.

    Article  CAS  Google Scholar 

  45. Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol. 2006;48:907–13.

    Article  CAS  Google Scholar 

  46. Chen Q-Z, Harding SE, Ali NN, Lyon AR, Boccaccini AR. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R. 2008;59:1–37.

    Article  Google Scholar 

  47. Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res. 2003;92:1068–78.

    Article  CAS  Google Scholar 

  48. Agostoni P, Banfi C. Matrix metalloproteinase and heart failure: is it time to move from research to clinical laboratories? Eur Heart J. 2007;28:659–60.

    Article  CAS  Google Scholar 

  49. Zeugolis, Zeugolis. The physiological relevance of wet versus dry differential scanning calorimetry for biomaterial evaluation. Polym Int. 2010;59:1403–7.

    Article  CAS  Google Scholar 

  50. Mayes AG, Whitcombe MJ. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Delivery Rev. 2005;57:1742–78.

    Article  CAS  Google Scholar 

  51. Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials. 2011;32:3008–20.

    Article  CAS  Google Scholar 

  52. Squire IB, Evans J, Leong LNG, Loftus IM, Thompson MM. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Cardiac Fail. 2004;10(4):328–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would acknowledge Dr. F. Boccafoschi (University of Eastern Piedmont “Amedeo Avogadro”, Novara, Italy) for cytotoxicity tests and Dr. T. Prescimone (Institute of Clinical Physiology, National Research Council, Pisa, Italy) for zymography analysis. This work was financially supported by Italian Ministry of University and Research PRIN-2008 grant (Bioartificial stem cell niches for cardiac tissue engineering, 2010–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Cristallini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristallini, C., Gagliardi, M., Barbani, N. et al. Novel biodegradable, biomimetic and functionalised polymer scaffolds to prevent expansion of post-infarct left ventricular remodelling. J Mater Sci: Mater Med 23, 205–216 (2012). https://doi.org/10.1007/s10856-011-4506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4506-1

Keywords

Navigation