Skip to main content
Log in

Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2–CaO–Na2O–P2O5 bioglasses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The evolution of elastic properties and structure upon the change of CaO/P2O5 ratio in SiO2–CaO–Na2O–P2O5 glasses (45S5-derived and 55S4-derived) at ambient conditions has been studied by using both Brillouin and Raman spectroscopy coupled with X-ray diffraction. Under the same SiO2/Na2O ratio, it is found that a decrease in CaO/P2O5 molar ratio has caused a more-polymerized silicate network via a net consumption of Q0, Q1, and Q2 species yet enriching in Q3 and Q4 species. Brillouin experiments revealed that all the bulk, shear and Young’s moduli of the glasses studied increases with the increase of CaO/P2O5 molar ratio. The unexpected variation trend in shear modulus can be correlated to the contribution from cohesion, the less-polymerized phosphate Q species, and density. Compared to the 45S5-derived, the more-polymerized 55S4-deived glass has a lower bulk but slightly higher shear modulus at the given CaO/P2O5 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A. 1971;5(6):117–41.

    Article  Google Scholar 

  2. Hench LL. Bioceramics: from concepts to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  3. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  4. Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res A. 1973;7(3):25–42.

    Article  CAS  Google Scholar 

  5. Lossdörfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials. 2004;25:2547–55.

    Article  Google Scholar 

  6. Tilocca A, Cormack AN. Structural effects of phosphorus inclusion in bioactive silicate glasses. J Phys Chem B. 2007;111:14256–64.

    Article  CAS  Google Scholar 

  7. O’Donnell MD, Watts SJ, Law RV, Hill RG. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties—part I: NMR. J Non-Cryst Solids. 2008;354:3554–60.

    Article  Google Scholar 

  8. O’Donnell MD, Watts SJ, Hill RG, Law RV. The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses. J Mater Sci Mater Med. 2009;20:1611–8.

    Article  Google Scholar 

  9. Lin CC, Huang L-C, Shen P. Na2CaSi2O6-P2O5 based bioactive glasses. Part 1: elasticity and structure. J Non-Cryst Solids. 2005;351:3195–203.

    Article  CAS  Google Scholar 

  10. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  11. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  Google Scholar 

  12. Kim H-M, Miyaji F, Kokubo T. Bioactivity of Na2O–CaO–SiO2 glasses. J Am Ceram Soc. 1995;78:2405–11.

    Article  CAS  Google Scholar 

  13. Wilson J, Pigott GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglasses. J Biomed Mater Res. 1981;15:805–17.

    Article  CAS  Google Scholar 

  14. Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials. 2001;22:1683–7.

    Article  CAS  Google Scholar 

  15. Gubler M, Brunner TJ, Zehnder M, Waltimo T, Sener B, Stark WJ. Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? Intern Endod J. 2008;41:670–8.

    Article  CAS  Google Scholar 

  16. Ryerson FJ, Hess PC. The role of P2O5 in silicate melts. Geochim Cosmochim Acta. 1980;44:611–24.

    Article  CAS  Google Scholar 

  17. Mysen BO, Ryerson FJ, Virgo D. The structural role of phosphorus in silicate melts. Am Mineral. 1981;66:106–17.

    CAS  Google Scholar 

  18. Elgayar I, Aliev AE, Boccaccini AR, Hill RG. Structural analysis of bioactive glasses. J Non-Cryst Solids. 2005;351:173–83.

    Article  CAS  Google Scholar 

  19. Whitfield CH, Brody EM, Bassett WA. Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev Sci Instrum. 1976;47:942–7.

    Article  CAS  Google Scholar 

  20. Mysen B. Phosphorus speciation changes across the glass transition in highly polymerized alkali silicate glasses and melts. Am Mineral. 1996;81:1531–4.

    CAS  Google Scholar 

  21. Bykov VN, Osipov AA, Anfilogov VN. Raman spectra and the structure of melts in the Na2O-P2O5-SiO2 system. Glass Phys Chem. 2001;27:204–8.

    Article  CAS  Google Scholar 

  22. Lockyer MWG, Holland D, Dupree R. NMR investigation of the structure of some bioactive and related glasses. J Non-Cryst Solids. 1995;188:207–19.

    Article  CAS  Google Scholar 

  23. Brauer DS, Karpukhina N, Law RV, Hill RG. Structure of fluoride-containing bioactive glasses. J Mater Chem. 2009;19:5629–36.

    Article  CAS  Google Scholar 

  24. Pedone A, Charpentier T, Malavasi G, Menziani MC. New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem Mater. 2010;22:5644–52.

    Article  CAS  Google Scholar 

  25. McMillan PF, Wolf GM. Vibrational spectroscopy of silicate liquids. In: Stebbins JF, McMillan PF, Dingwel DB, editors. Structure, dynamics and properties of silicate melts. Washington DC: Mineralogical Society of America; 1995. p. 247–315.

    Google Scholar 

  26. Mysen BO, Virgo D, Kushiro I. The structural role of aluminum in silicate melts—a Raman spectroscopic study at 1 atmosphere. Am Miner. 1981;66:678–701.

    CAS  Google Scholar 

  27. Mysen BO, Virgo D, Scarfe CM. Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study. Am Miner. 1980;65:690–710.

    CAS  Google Scholar 

  28. Ellison AJG, Hess PC. Raman study of potassium silicate glasses containing Rb+, Sr2+, Y3+, and Zr4+: implications for cation solution mechanisms in multicomponent silicate liquids. Geochim Cosmochim Acta. 1994;58:1877–87.

    Article  CAS  Google Scholar 

  29. Konijnendijk WL, Stevelts JM. Raman scattering measurements of silicate glasses and compounds. J Non-Cryst Solids. 1976;21:447–53.

    Article  CAS  Google Scholar 

  30. Wong J. Vibrational spectra of vapor-deposited binary phosphosilicate glasses. J Non-Cryst Solids. 1976;20:83–100.

    Article  CAS  Google Scholar 

  31. Lin CC, Chen S-F, Liu L-g, Li C-C. Size effects of modifying cation on the structure and elastic properties of Na2O–MO–SiO2 glasses (M = Mg, Ca, Sr, Ba). Mater Chem Phys. 2010;123:569–80. and the literature cited therein.

    Article  CAS  Google Scholar 

  32. Rao KJ, Baskaran N, Ramakrishnan PA, Ravi BG, Karthikeyan A. Structural and lithium ion transport studies in sol–gel prepared lithium silicophosphate glasses. Chem Mater. 1998;10:3109–23.

    Article  CAS  Google Scholar 

  33. Zotov N, Schlenz H, Brendebach B, Modrow H, Hormes J, Reinauer F, Glaum R, Kirfel A, Paulmann C. Effects of MnO-doping on the structure of sodium metaphosphate glasses. Z Naturforsch. 2003;58a:419–28.

    Google Scholar 

  34. Lin CC, Chen S-F, Liu L-g, Li C-C. Anionic structure and elasticity of Na2O–MgO–SiO2 glasses. J Non-Cryst Solids. 2007;353:413–25.

    Article  CAS  Google Scholar 

  35. Brawer SA, White WB. Raman spectroscopic investigation of the structure of silicate glasses (II): soda-alkaline earth-alumina ternary and quaternary glasses. J Non-Cryst Solids. 1977;23:261–78.

    Article  CAS  Google Scholar 

  36. Mysen BO, Virgo DV, Seifert FA. The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys. 1982;20:353–83.

    Article  CAS  Google Scholar 

  37. Furukawa T, Fox KE, White WB. Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys. 1981;75:3226–37.

    Article  CAS  Google Scholar 

  38. McMillan P. A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2. Am Miner. 1984;69:645–59.

    CAS  Google Scholar 

  39. Lin CC, Liu L-g. Composition dependence of elasticity in aluminosilicate glasses. Phys Chem Miner. 2006;33:332–46.

    Article  CAS  Google Scholar 

  40. Huang L-C, Lin CC, Shen P. Crystallization and stoichiometry of crystals in Na2CaSi2O6-P2O5 based bioactive glasses. Mater Sci Eng A. 2007;452/453:326–33.

    Article  Google Scholar 

  41. O’Donnell MD, Watts SJ, Law RV, Hill RG. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties—part II: physical properties. J Non-Cryst Solids. 2008;354:3561–6.

    Article  Google Scholar 

  42. Oliveira JM, Correia RN, Fernandes MH. Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials. 2002;23:371–9.

    Article  CAS  Google Scholar 

  43. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-Amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  CAS  Google Scholar 

  44. Lin CC, Shen P, Chang HM, Yang YJ. Composition dependent structure and elasticity of lithium silicate glasses: effect of ZrO2 additive and the combination of alkali silicate glasses. J Eur Ceram Soc. 2006;26:3613–20.

    Article  CAS  Google Scholar 

  45. Vaills Y, Luspin Y, Hauret G. Two opposite effects of sodium on elastic constants of silicate binary glasses. Mater Sci Eng B. 1996;40:199–202.

    Article  Google Scholar 

  46. Leung KS (2009) Elastic properties and structure of the Na2O–CaO–P2O5–SiO2 bioactive glasses: effects of Ca/P ratio and a comparison with the Na2O–CaO–SiO2 glasses. MS Thesis, Institute of Materials and Mineral Resource Engineering, National Taipei University of Technology, Taiwan.

Download references

Acknowledgments

The authors thank Dr. S.-G. Shyu, Institute of Chemistry, Academia Sinica, and Mr. T. S. Kao, Department of Chemistry of National Taiwan University, for the help with X-ray diffraction and DSC experiments, respectively

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Cherng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Chen, SF., Leung, K.S. et al. Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2–CaO–Na2O–P2O5 bioglasses. J Mater Sci: Mater Med 23, 245–258 (2012). https://doi.org/10.1007/s10856-011-4504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4504-3

Keywords

Navigation