Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel

Abstract

Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an ‘one pot and one step’ in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, Mn = 258 g mol−1), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M= 475 g mol−1) and (2-methoxyethoxy) ethyl methacrylate (MEO2MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release. 2002;78(1–3):199–209.

    Article  CAS  Google Scholar 

  2. 2.

    Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26(18):3941–51.

    Article  CAS  Google Scholar 

  3. 3.

    Elisseeff J. Injectable cartilage tissue engineering. Expert Opin Biol Ther. 2004;4(12):1849–59.

    Article  CAS  Google Scholar 

  4. 4.

    Mano JF. Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater. 2008;10(6):515–27.

    Article  CAS  Google Scholar 

  5. 5.

    Yu L, Ding JD. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–81.

    Article  CAS  Google Scholar 

  6. 6.

    Friedrich T, Tieke B, Stadler FJ, Bailly C, Eckert T, Richtering W. Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: swelling behavior, transparency and rheological properties. Macromolecules. 2010;43(23):9964–71.

    Article  CAS  Google Scholar 

  7. 7.

    Galperin A, Long TJ, Ratner BD. Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules. 2010;11(10):2583–92.

    Article  CAS  Google Scholar 

  8. 8.

    Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release. 2002;80(1–3):9–28.

    Article  CAS  Google Scholar 

  9. 9.

    Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20(7):305–11.

    Article  CAS  Google Scholar 

  10. 10.

    Wang WX, Liang H, Al Ghanami RC, Hamilton L, Fraylich M, Shakesheff KM, Saunders B, Alexander C. Biodegradable thermoresponsive microparticle dispersions for injectable cell delivery prepared using a single-step process. Adv Mater. 2009;21(18):1809.

    Article  CAS  Google Scholar 

  11. 11.

    Kwon IK, Matsuda T. Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials. 2006;27(7):986–95.

    Article  CAS  Google Scholar 

  12. 12.

    Potta T, Chun C, Song SC. Dual cross-linking systems of functionally photo-cross-linkable and thermoresponsive polyphosphazene hydrogels for biomedical applications. Biomacromolecules. 2010;11(7):1741–53.

    Article  CAS  Google Scholar 

  13. 13.

    Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.

    Article  CAS  Google Scholar 

  14. 14.

    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev. 2001;53(3):321–39.

    Article  CAS  Google Scholar 

  15. 15.

    Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631–43.

    Article  CAS  Google Scholar 

  16. 16.

    Zhang Niu GG, HB Song L, Cui XP, Cao H, Zheng YD, Zhu SQ, Yang Z, Yang H. Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers. Biomacromolecules. 2008;9(10):2621–8.

    Article  Google Scholar 

  17. 17.

    Rydholm AE, Bowman CN, Anseth KS. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials. 2005;26(22):4495–506.

    Article  CAS  Google Scholar 

  18. 18.

    Hou DD, Hao T, Ye L, Zhang AY, Wang CY, Feng ZG, 4. Preparation and characterization of injectable hydrogels made via Michael-type addition reaction of dithiothreitol with 3-Arm acryloyl end-capped PEG. Acta Polym Sin. 2008;1(4):388–93.

    Article  Google Scholar 

  19. 19.

    Vernon B, Tirelli N, Bachi T, Haldimann D, Hubbell JA. Water-borne, in situ crosslinked biomaterials from phase-segregated precursors. J Biomed Mater Res A. 2003;64A(3):447–56.

    Article  CAS  Google Scholar 

  20. 20.

    Cheng V, Lee BH, Pauken C, Vernon BL. Poly(N-isopropylacrylamide-co-poly(ethylene glycol))-acrylate simultaneously physically and chemically gelling polymer systems. J Appl Polym Sci. 2007;106(2):1201–7.

    Article  CAS  Google Scholar 

  21. 21.

    Cellesi F, Tirelli N, Hubbell JA. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol Chem Phys. 2002;203(10–11):1466–72.

    Article  CAS  Google Scholar 

  22. 22.

    Cellesi F, Tirelli N, Hubbell JA. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Biomaterials. 2004;25(21):5115–24.

    Article  CAS  Google Scholar 

  23. 23.

    Lee BH, West B, McLemore R, Pauken C, Vernon BL. In situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules. 2006;7(6):2059–64.

    Article  CAS  Google Scholar 

  24. 24.

    Tai H, Wang W, Vermonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM. Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromolecules. 2009;10:822–8.

    Article  CAS  Google Scholar 

  25. 25.

    Dong YX, Gunning P, Cao HL, Mathew A, Newland B, Saeed AO, Magnusson JP, Alexander C, Tai HY, Pandit A, Wang WX. Dual stimuli responsive PEG based hyperbranched polymers. Polym Chem. 2010;1(10):827–30.

    Article  CAS  Google Scholar 

  26. 26.

    Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Edit. 2010;49(9):1540–73.

    Article  CAS  Google Scholar 

  27. 27.

    Smart JD. An invitro assessment of some mucosa-adhesive dosage forms. Int J Pharm. 1991;73(1):69–74.

    Article  CAS  Google Scholar 

  28. 28.

    Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HWJ. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release. 2004;96(2):285–300.

    Article  CAS  Google Scholar 

  29. 29.

    Zhang J, Peppas NA. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules. 2000;33(1):102–7.

    Article  CAS  Google Scholar 

  30. 30.

    Zhang XZ, Wu DQ, Chu CC. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials. 2004;25(17):3793–805.

    Article  CAS  Google Scholar 

  31. 31.

    Chen WYJ, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7(2):79–89.

    Article  CAS  Google Scholar 

  32. 32.

    Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RAF. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng. 2006;12(3):601–13.

    Article  CAS  Google Scholar 

  33. 33.

    Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in treatment of knee osteoarthritis—a meta-analysis. J Am Med Assoc. 2003;290(23):3115–21.

    Article  CAS  Google Scholar 

  34. 34.

    Wang CT, Lin J, Chang CJ, Lin YT, Hou SM. Therapeutic effects of hyaluronic acid on osteoarthritis of the knee—a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2004;86A(3):538–45.

    Google Scholar 

  35. 35.

    Nesti LJ, Li WJ, Shanti RM, Jiang YJ, Jackson W, Freedman BA, Kuklo TR, Giuliani JR, Tuan RS. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng A. 2008;14(9):1527–37.

    Article  CAS  Google Scholar 

  36. 36.

    Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng. 2004;32(3):391–7.

    Article  Google Scholar 

  37. 37.

    Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26(6):611–9.

    Article  CAS  Google Scholar 

  38. 38.

    Fang JY, Chen JP, Leu YL, Hu HW. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur J Pharm Biopharm. 2008;68(3):626–36.

    Article  CAS  Google Scholar 

  39. 39.

    Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun. 2005;14(34):4312–4.

    Article  Google Scholar 

  40. 40.

    Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release. 2000;69(1):169–84.

    Article  CAS  Google Scholar 

  41. 41.

    Kutty JK, Cho E, Lee JS, Vyavahare NR, Webb K. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials. 2007;28(33):4928–38.

    Article  CAS  Google Scholar 

  42. 42.

    Cesaretti M, Luppi E, Maccari F, Volpi N. A 96-well assay for uronic acid carbazole reaction. Carbohydr Polym. 2003;54(1):59–61.

    Article  CAS  Google Scholar 

  43. 43.

    Wang WX, Zheng Y, Roberts E, Duxbury CJ, Ding LF, Irvine DJ, Howdle SM. Controlling chain growth: a new strategy to hyperbranched materials. Macromolecule. 2007;40:7184.

    Article  CAS  Google Scholar 

  44. 44.

    Lutz JF, Weichenhan K, Akdemir O, Hoth A. About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules. 2007;40(7):2503–8.

    Article  CAS  Google Scholar 

  45. 45.

    Hedberg EL, Tang A, Crowther RS, Carney DH, Mikos AG. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. J Control Release. 2002;84(3):137–50.

    Article  CAS  Google Scholar 

  46. 46.

    Lih E, Joung YK, Bae JW, Park KD. An in situ gel-forming heparin-conjugated PLGA-PEG-PLGA copolymer. J Bioact Compat Polym. 2008;23(5):444–57.

    Article  CAS  Google Scholar 

  47. 47.

    Nuttelman CR, Tripodi MC, Anseth KS. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J Biomed Mater Res A. 2004;68A(4):773–82.

    Article  CAS  Google Scholar 

  48. 48.

    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  CAS  Google Scholar 

  49. 49.

    Wang CM, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliver Rev. 2010;62(7–8):699–710.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Science Foundation Ireland (SFI), SFI Principal Investigator programme, Heath Research Board (HRB) of Ireland, DEBRA Ireland and DEBRA Austria, National University of Ireland, Galway are gratefully acknowledged for funding. YD thanks Mohammad Abu-Rub and Estelle Collin in NFB for the help on hydrogel characterization and 3D cell culture work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenxin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, Y., Hassan, W., Zheng, Y. et al. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. J Mater Sci: Mater Med 23, 25–35 (2012). https://doi.org/10.1007/s10856-011-4496-z

Download citation

Keywords

  • Hyaluronic Acid
  • Atom Transfer Radical Polymerization
  • Lower Critical Solution Temperature
  • Interpenetrate Polymer Network
  • Copolymer Solution