Skip to main content

A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin

Abstract

Icariin, a plant-derived flavonol glycoside, has been proved as an osteoinductive agent for bone regeneration. For this reason, we developed an icariin-loaded chitosan/nano-sized hydroxyapatite (IC–CS/HA) system which controls the release kinetics of icariin to enhance bone repairing. First, by Fourier transform infrared spectroscopy, we found that icariin was stable in the system developed without undergoing any chemical changes. On the other hand, X-ray diffraction, scanning electron microscopy and mechanical test revealed that the introduction of icariin did not remarkably change the phase, morphology, porosity and mechanical strength of the CS/HA composite. Then the hydrolytic degradation and drug release kinetics in vitro were investigated by incubation in phosphate buffered saline solution. The results indicated that the icariin was released in a temporally controlled manner and the release kinetics could be governed by degradation of both chitosan and hydroxyapatite matrix. Finally the in vitro bioactivity assay revealed that the loaded icariin was biologically active as evidenced by stimulation of bone marrow derived stroma cell alkaline phosphatase activity and formation of mineralized nodules. This successful IC–CS/HA system offers a new delivery method of osteoinductive agents and a useful scaffold design for bone regeneration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007;13:927–38.

    Article  CAS  Google Scholar 

  2. Lin ZY, Duan ZX, Guo XD, Li JF, Lu HW, Zheng QX, Quan DP, Yang SH. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release. 2010;144:190–5.

    Article  CAS  Google Scholar 

  3. Lee JY, Seol YJ, Kim KM, Lee YM, Park YJ, Rhyu IC, Chung CP, Lee SJ. Transforming growth factor (TGF)-beta1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004;21:1790–6.

    Article  CAS  Google Scholar 

  4. Bi L, Cheng W, Fan H, Pei G. Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials. 2010;31:3201–11.

    Article  CAS  Google Scholar 

  5. Okada M, Sangadala S, Liu Y, Yoshida M, Reddy BV, Titus L, Boden SD. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity. Cell Biochem Funct. 2009;27:526–34.

    Article  CAS  Google Scholar 

  6. Santin M, Morris C, Standen G, Nicolais L, Ambrosio L. A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules. 2007;8(9):2706–11.

    Article  CAS  Google Scholar 

  7. Giavaresi G, Fini M, Salvage J, Nicoli Aldini N, Giardino R, Ambrosio L, Nicolais L, Santin M. Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defect. J Mater Sci Mater Med. 2010;21(2):615–26.

    Article  CAS  Google Scholar 

  8. Morris C, Thorpe J, Ambrosio L, Santin M. The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J Nutr. 2006;136:1166–70.

    CAS  Google Scholar 

  9. Zhao J, Ohba S, Komiyama Y, Shinkai M, Chung UI, Nagamune T. Icariin: a potential osteoinductive compound for bone tissue engineering. Tissue Eng Part A. 2010;16:233–43.

    Article  CAS  Google Scholar 

  10. Nian H, Ma MH, Nian SS, Xu LL. Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine. 2009;16:320–6.

    Article  CAS  Google Scholar 

  11. Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H. Antiosteoporotic chemical constituents from Er-Xian decoction, a traditional Chinese herbal formula. J Ethnopharmacol. 2008;118:271–9.

    Article  CAS  Google Scholar 

  12. Zhao J, Ohba S, Shinkai M, Chung UI, Nangamue T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun. 2008;369:444–8.

    Article  CAS  Google Scholar 

  13. De la Riva B, Sánchez E, Hernández A, Reyes R, Tamimi F, López-Cabarcos E, Delgado A, Evora C. Local controlled release of VEGF and PDGF from a combined brushite–chitosan system enhances bone regeneration. J Control Release. 2010;143:45–52.

    Article  Google Scholar 

  14. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Transact A Math Phys Eng Sci. 2010;368:2065–81.

    Article  CAS  Google Scholar 

  15. Liuyun J, Yubao L, Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite chitosan carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009;14:65.

    Article  Google Scholar 

  16. Hu Q, Li B, Wang M, Shen J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatitechitosan nano-composite for use in biomedical materials. Biomaterials. 2004;25:779–85.

    Article  CAS  Google Scholar 

  17. Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate–chitosan hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46:199–205.

    Article  CAS  Google Scholar 

  18. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, Takakuda K, Monma H, Tanaka J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 2000;55(1):20–7.

    Article  Google Scholar 

  19. Yoshida A, Miyazaki T, Ishida E, Ashizuka M. Preparation of bioactive chitosan-hydroxyapatite nanocomposites for bone repair through mechanochemical reaction. Mater Trans. 2004;45:994–8.

    Article  CAS  Google Scholar 

  20. Kong LJ, Gao Y, Cao WL, Gong YD, Zhao NM, Zhang XF. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J Biomed Mater Res A. 2005;75(2):275–82.

    Google Scholar 

  21. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–37.

    Article  CAS  Google Scholar 

  22. Kong LJ, Gao Y, Lu GY, Gong YD, Zhao NM, Zhang XF. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J. 2006;42:3171–9.

    Article  CAS  Google Scholar 

  23. Zhang R, Ma PX. Poly (alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.

    Article  CAS  Google Scholar 

  24. Zheng J, Liang L. Intra-portal transplantation of bone marrow stromal cells ameliorates liver fibrosis in mice. Hepatobiliary Pancreat Dis Int. 2008;7(3):264–70.

    Google Scholar 

  25. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.

    Article  CAS  Google Scholar 

  26. Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA collagen PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134:111–7.

    Article  CAS  Google Scholar 

  27. Gong YH, Zhou QL, Gao CY, Shen JC. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater. 2007;3:531–40.

    Article  CAS  Google Scholar 

  28. Wei GB, Jin QM, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28:2087–96.

    Article  CAS  Google Scholar 

  29. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, Kwon IC. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta 1: implications for cartilage tissue engineering. J Control Release. 2003;91:365–74.

    Article  CAS  Google Scholar 

  30. Lee J, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho HC, Kim HJ, Seong SC, Lee MC. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25:4163–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Chinese Ministry of Science and Technology (973 Program No. 2009CB930003), NSF of China (Grant No. u0732003 and No. 30901532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxian Pei.

Additional information

Junjun Fan, Long Bi, and Tao Wu are contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, J., Bi, L., Wu, T. et al. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin. J Mater Sci: Mater Med 23, 399–407 (2012). https://doi.org/10.1007/s10856-011-4491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4491-4

Keywords

  • Chitosan
  • Polylactic Acid
  • Osteogenic Differentiation
  • Bone Regeneration
  • Release Kinetic