Skip to main content

Advertisement

Log in

Characterization of bionanocomposite scaffolds comprised of mercaptoethylamine-functionalized gold nanoparticles crosslinked to acellular porcine tissue

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bionanocomposite scaffolds comprised of nanomaterials and the extracellular matrix (ECM) of porcine diaphragm tissue capitalizes on the benefits of utilizing a natural ECM material, while also potentially enhancing physicomechanical properties and biocompatibility through nanomaterials. Gold nanoparticle (AuNP) bionanocomposite scaffolds were subjected to a number of characterization techniques to determine whether the fabrication process negatively impacted the properties of the porcine diaphragm tissue and whether the AuNP improved the properties of the tissue. Tensile testing and differential scanning calorimetry demonstrated that the bionanocomposite possessed improved tensile strength and thermal stability relative to natural tissue. The collagenase assay and Fourier transform infrared spectroscopy additionally confirmed that denaturation of the collagen of the ECM did not occur. The novel bionanocomposite scaffold possessed properties similar to commercially available scaffolds and will be further developed for soft tissue applications such as hernia repair through in vivo studies in an animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hsu SH, Tang CM, Tseng HJ. Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res A. 2006;79:759–70.

    Google Scholar 

  2. Wu ZS, Zhang SB, Guo MM, Chen CR, Shen GL, Yu RQ. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide. Anal Chim Acta. 2007;584:122–8.

    Article  CAS  Google Scholar 

  3. Chou CW, Hsu SH, Wang PH. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model. J Biomed Mater Res A. 2008;84:785–94.

    Google Scholar 

  4. Owens DE III, Eby JK, Jian Y, Peppas NA. Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res A. 2007;83:692–5.

    Google Scholar 

  5. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171–6.

    Article  Google Scholar 

  6. Hsu S, Chou C, Tseng S. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng. 2004;289:1096–101.

    Article  CAS  Google Scholar 

  7. Lin YL, Jen JC, Hsu SH, Chiu IM. Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanocomposites. Surg Neurol. 2008. doi:10.1016/j.surneu.2008.01.057.

  8. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114:343–7.

    Article  CAS  Google Scholar 

  9. Sershen SR, Westcott SL, Halas NJ, West JL. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res. 2000;51:293–8.

    Article  CAS  Google Scholar 

  10. Pingarron J, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. 2008;53:5848–66.

    Article  CAS  Google Scholar 

  11. Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90:1927–36.

    Article  CAS  Google Scholar 

  12. Alric C, Taleb J, Le DG, Mandon C, Billotey C, Le Meur-Herland A, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc. 2008;130:5908–15.

    Article  CAS  Google Scholar 

  13. Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 2006;6:587–91.

    Article  CAS  Google Scholar 

  14. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  Google Scholar 

  15. Haidekker MA, Boettcher LW, Suter JD, Rone R, Grant SA. Influence of gold nanoparticles on collagen fibril morphology quantified using transmission electron microscopy and image analysis. BMC Med Imaging. 2006;6:4–10.

    Article  Google Scholar 

  16. Xie J, Macewan MR, Li X, Sakiyama-Elbert SE, Xia Y. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano. 2009;3:1151–9.

    Article  CAS  Google Scholar 

  17. Xie J, Macewan MR, Ray WZ, Liu W, Siewe DY, Xia Y. Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano. 2010;4:5027–36.

    Article  CAS  Google Scholar 

  18. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.

    Article  CAS  Google Scholar 

  19. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8:295–308.

    Article  CAS  Google Scholar 

  20. Deeken CR, White AK, Bachman SL, Ramshaw BJ, Cleveland DS, Loy TS, Grant SA. Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B. 2011;96:199–206.

    CAS  Google Scholar 

  21. Deeken CR, Fox DB, Bachman SL, Ramshaw BJ, Grant SA. Characterization of bionanocomposite scaffolds comprised of amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon. J Biomed Mater Res B. 2011;97:334–44.

    Google Scholar 

  22. Deeken CR, Cozad MJ, Bachman SL, Ramshaw BJ, Grant SA. Characterization of bionanocomposite scaffolds comprised of amine-functionalized single-walled carbon nanotubes crosslinked to an acellular porcine tendon. J Biomed Mater Res A. 2011;96:584–94.

    Google Scholar 

  23. Deeken CR, Esebua M, Bachman SL, Ramshaw BJ, Grant SA. Assessment of the biocompatibility of two novel, bionanocomposite scaffolds in a rodent model. J Biomed Mater Res B. 2011;96:351–9.

    CAS  Google Scholar 

  24. Grant SA, Deeken CR, Grant DA, Bachman SL, Ramshaw BJ. In vivo study of a novel AuNP-tissue scaffold. Orlando: Society for Biomaterials; 2011.

    Google Scholar 

  25. Bellino MG, Calvo EJ, Gordillo G. Adsorption kinetics of charged thiols on gold nanoparticles. Phys Chem Chem Phys. 2004;6:424–8.

    Article  CAS  Google Scholar 

  26. Cartmell JS, Dunn MG. Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res. 2000;49:134–40.

    Article  CAS  Google Scholar 

  27. Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J Biomed Mater Res A. 2005;75:510–8.

    CAS  Google Scholar 

  28. Friess W, Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials. 1996;17:2289–94.

    Article  CAS  Google Scholar 

  29. Ozaki Y, Mizuno A, Kaneuchi F. Structural differences between type-I and type-IV collagen in biological tissues studied invivo by attenuated total reflection Fourier-transform infrared-spectroscopy. Appl Spectrosc. 1992;46:626–30.

    Article  CAS  Google Scholar 

  30. Deeken CR, Eliason BJ, Pichert MD, Grant SA, Frisella MM, Matthews BD: Characterization of the physicomechanical, thermal, and degradation properties of biologic scaffold materials utilized for hernia repair applications. In: Hernia Repair 2011, American Hernia Society, San Francisco, CA; 2011.

  31. Rochdi A, Foucat L, Renou JP. Effect of thermal denaturation on water–collagen interactions: NMR relaxation and differential scanning calorimetry analysis. Biopolymers. 1999;50:690–6.

    Article  CAS  Google Scholar 

  32. Than P, Halmai V, Kereskai L, Gazso I. Thermal analysis of the cruciate ligaments of the human knee. J Therm Anal Calorim. 2005;81:307–10.

    Article  CAS  Google Scholar 

  33. Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJ, Hendriks M, Cahalan PT, Feijen J. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999;20:921–31.

    Article  CAS  Google Scholar 

  34. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide. Biomaterials. 1996;17:679–84.

    Article  CAS  Google Scholar 

  35. Zerris VA, James KS, Roberts JB, Bell E, Heilman CB. Repair of the dura mater with processed collagen devices. J Biomed Mater Res B. 2007;83:580–8.

    Google Scholar 

  36. Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials. 2004;25:3541–52.

    Article  CAS  Google Scholar 

  37. Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, Song XH, van der Werf M. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The scanning electron microscope utilized in this study was an FEI Quanta FEG 600 FEG acquired under NSF award #ECS-0619607, award #PRM-06-029, and other internal funds from the University of Missouri. This research was supported in part by a National Science Foundation Graduate Research Fellowship, an Internal Project Award from the Department of Surgery at the University of Missouri, and the University of Missouri Food for the twenty-first century (F21C) grant. The authors would also like to thank David Grant, J. Todd Vassalli, and Braden Eliason for their contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila A. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeken, C.R., Bachman, S.L., Ramshaw, B.J. et al. Characterization of bionanocomposite scaffolds comprised of mercaptoethylamine-functionalized gold nanoparticles crosslinked to acellular porcine tissue. J Mater Sci: Mater Med 23, 537–546 (2012). https://doi.org/10.1007/s10856-011-4486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4486-1

Keywords

Navigation